

TEST REPORT (TEXTILES)

Report Date: 28 / 04 /2023

Factory's name : SQ CELSIUS LIMITED

Factory's address : BERAIDER CHALA, MAONA, SREEPUR, GAZIPUR, BANGLADESH

Type of wastewater discharge: Direct discharge

On-site Wastewater treatment plant: With wastewater treatment plant

Average total industrial wastewater ≥ 15m3/day

generated:

Date and time of the beginning of sampling: [19 / 04 / 2023] [10:30]

Date and time of the end of sampling: [19 / 04 / 2023] [16:30]

Date received sample: [19 / 04 / 2023]

Testing period: From 19 / 04 / 2023 to 28 / 04 / 2023

Arrival temperature at laboratory: [6 °C]

Sample type:

Sample / Untreated wastewater [Grey, composite sample at

10:30; 11:30; 12:30; 13:30; 14:30; 15:30] [Sampling location: N 24.21010, E 90.41689]

Sample / Effluent [Transparent, composite sample at

11:00; 12:00; 13:00; 14:00; 15:00; 16:00] [Sampling location: N 24.21020, E 90.41732]

Sample / Sludge [Grey, composite sample at 16:30]

[Sampling location: N 24.21012, E 90.41706]

Sampling laboratory: ITS Labtest Bangladesh Ltd. Testing laboratory: ITS Labtest Bangladesh Ltd.

ZDHC sampler accreditation certification

number:

C74D106817340

Local legal standard name^[a]: The Environment Conservation Rules, 2023; Government of the

People's Republic of Bangladesh; Ministry of Environment, Forest

Number: BGDT23051736

and Climate Change

Local legal standard no. [a]: The Environment Conservation Rules, 2023; Government of the

People's Republic of Bangladesh; Ministry of Environment, Forest

and Climate Change

Parameters (ZDHC WWSG V2.1, Table 2-3)

exceeded local regulation:

No exceeded

Discharge permit provided: Yes

Tests conducted:

As requested by a brand program, for details refer to attached page(s).

TEST REPORT (TEXTILES)

Summary of test results:

Wastewater / MRSL – Test items	Untreated Wastewater
Alkylphenol ethoxylates / Alkylphenols (APEOs/APs)	ND
Anti-Microbials & Biocides	ND
Chlorinated Parafins	ND
Chlorobenzenes and Chlorotoluenes	ND
Chlorophenols	ND
Dimethyl Formamide (DMFa) (*)	ND
Dyes – Carcinogenic or Equivalent Concern	ND
Dyes – Disperse (Allergenic)	ND
Dyes – Navy Blue Colourant	ND
Flame Retardants	ND
Glycols / Glycol Ethers	ND
Halogenated solvents	ND
Organotin compounds	ND
Other/Miscellaneous Chemicals	ND
Perfluorinated & Polyfluorinated chemicals (PFCs)	ND
Phthalates (Ortho-phthalates)	ND
Polycyclic aromatic hydrocarbons (PAHs)	ND
Restricted Aromatic Amines (Cleavable from Azo- colourants)	ND
UV Absorbers	ND
Volatile Organic Compounds (VOC)	ND

Markovsky (Harry workly Torkitana		Effluent			
Wastewater / Heavy metals - Test items	Foundational	Progressive	Aspirational		
Antimony			Meet		
Chromium (VI)			Meet		
Barium	R	eport only, refer da	ta		
Selenium	R	eport only, refer da	ta		
Tin	R	eport only, refer da	ta		
Arsenic			Meet		
Chromium (total)			Meet		
Cobalt			Meet		
Cadmium			Meet		
Copper			Meet		
Lead			Meet		
Nickel			Meet		
Silver		_	Meet		
Zinc			Meet		
Mercury		_	Meet		

TEST REPORT (TEXTILES)

Effluent Wastewater / Conventional parameters - Test items Aspirational Foundational Progressive pH^[f] Meet Temperature difference^[f] Meet E.coli Meet Colour Meet Persistent foam^[f] Meet Wastewater flowrate^[f] Report only, refer data Ammonium-Nitrogen Meet **AOX** Meet Biochemical Oxygen Demand (BOD₅) Meet Chemical Oxygen Demand (COD) Meet Dissolved Oxygen (DO) [f] Report only, refer data Oil & Grease Meet Total Phenols / Phenol Index Meet Total Chlorine [f] Report only, refer data Total Dissolved Solids (TDS) Report only, refer data **Total Nitrogen** Meet **Total Phosphorus** Meet Total Suspended Solids (TSS) Meet

Number: BGDT23051736

Wastewater / Anions - Test items		Effluent		
	Foundational	Progressive	Aspirational	
Chloride	R	eport only, refer da	ata	
Cyanide, total			Meet	
Sulfate	R	eport only, refer da	ata	
Sulfide			Meet	
Sulfite			Meet	

Sludge – Disposal Pathways A

Sludge / Heavy Metals - Test items Sludge (Total) Sludge (Leachate) Antimony Meet Arsenic Meet **Barium** Meet Cadmium Meet Cobalt Meet Copper Meet Lead Meet Nickel Meet Selenium Meet Silver Meet Chromium (total) Meet Zinc Meet Chromium VI Meet Mercury Meet

TEST REPORT (TEXTILES)

Number: BGDT23051736

Sludge / Anion - Test items	Sludge
Cyanide	Report only, refer data

Sludge / Conventional parameters - Test items	Sludge
рН	Report only, refer data
% Solids	Report only, refer data
Paint filter test	Report only, refer data
Faecal coliform	Report only, refer data

Sludge / MRSL - Test items	Sludge
Alkylphenol (AP) and Alkylphenol Ethoxylates	Report only, refer data
(APEOs): including all isomers	
Polycyclic Aromatic Hydrocarbons (PAHs)	Report only, refer data
Chlorotoluenes	Report only, refer data

Note:	
ND = Not detected (less than reporting limit)	
D = Detected	
N/A = Not applicable	- = Did not perform
# = No comment	* = See Remark
(T) = If sample temperature is greater than 8°C and less than	10°C when received from the laboratory.
(TT) = If sample temperature is exceeded 10°C when receive	d from the laboratory.
@ = Maximum holding time exceeded.	
(*) = Sample and report for mock leather.	
[f] = On-site test by sampler.	
[a] = The local legal standard name and legal standard no. is	referenced to discharge permit (or contractual agree

by CETP) that provided by applicant.

This report shown the test result of the environment samples of above factory which collected on specific date and time. The results of this report shall not be used for any regulatory compliance purposes.

Authorized By

For ITS Labtest Bangladesh Ltd.

Mohammad Neyamul Hasan

Country Business Line Leader, Softlines

TEST REPORT (TEXTILES)

Sample / Wastewater

1. Alkylphenol (AP) and Alkylphenol Ethoxylates (APEOs): including all isomers

NP/OP: With reference to ISO 18857-2 (modified dichloromethane extraction) or ASTM D7065 with GC-MS or LC-MS-MS analysis.

Number: BGDT23051736

OPEO/NPEO (n>2): With reference to ASTM D7742 or ISO 18857-2

Chemical substances	CAS no.	Reporting limit (μg/L)	Untreated wastewater	Unit
	9016-45-9;			
	26027-38-3;			
Nonylphenol ethoxylates (NPEO)	37205-87-1;	5	ND	μg/L
	68412-54-4;			
	127087-87-0			
	104-40-5;	5	ND	
Nonylphenol (NP), mixed isomers	11066-49-2;			
Nonyiphenoi (NP), mixeu isomers	25154-52-3;	5	ND	μg/L
	84852-15-3			
	9002-93-1;			
Octylphenol ethoxylates (OPEO)	9036-19-5;	5	ND	μg/L
	68987-90-6			
	140-66-9;			
Octylphenol (OP), mixed isomers	1806-26-4;	5	ND	μg/L
	27193-28-8			

Remark: ND = Not detected (less than reporting limit)

2. Anti- Microbials & Biocides

OPP, Triclosan: With reference to USEPA 8270E Solvent extraction, derivatization with KOH, acetic anhydride followed by GC-MS analysis; with reference to BS EN 12673-1999 an alternative method of solvent extraction and derivatization are included.

Permethrin: With reference to USEPA 8270E Solvent extraction, followed by GC-MS analysis; With reference to ISO 14154:2005 without derivatization and determination by LC-MS or LC-MS-MS analysis.

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
o-Phenylphenol (+salts)	90-43-7	100	ND	μg/L
Triclosan	3380-34-5	100	ND	μg/L
Permethrin	Multiple	500	ND	μg/L

TEST REPORT (TEXTILES)

3. Chlorinated Parafins

For MCCP: With reference to EPA 3510, analysis by ISO18219-2:2021 with GC-MS-NCI or LC-MS-MS analysis. For SCCP: With reference to EPA 3510, analysis by ISO18219-1:2021, ISO 12010:2019 with GC-MS-NCI or LC-MS-MS analysis.

Number: BGDT23051736

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
Medium-chain Chlorinated paraffins (MCCPs) (C14-C17)	85535-85-9	500	ND	μg/L
Short-chain Chlorinated paraffin (C10 – C13)	85535-84-8	25	ND	μg/L

Remark: ND = Not detected (less than reporting limit)

4. <u>Chlorobenzenes and Chlorotoluenes</u>

With reference to USEPA 8260D, USEPA 8270E, Purge and Trap, Head Space, Dichloromethane extraction followed by GC-MS analysis.

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
1,2-Dichlorobenzene	95-50-1	0.2	ND	μg/L
Other isomers of mono-, di-, tri-, tetra-, penta- and hexa- Chlorobenzene and mono-, di-, tri-, tetra- and penta- chlorotoluene	Multiple	0.2	ND	μg/L

Remark: ND = Not detected (less than reporting limit)

5. <u>Chlorophenols</u>

With reference to US EPA 8270E solvent extraction, derivatization with KOH, acetic anhydride followed by GC-MS; with reference to BS EN 12673-1999 solvent extraction and derivatization are included.

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
2-Chlorophenol	95-57-8	0.5	ND	μg/L
3-Chlorophenol	108-43-0	0.5	ND	μg/L
4-Chlorophenol	106-48-9	0.5	ND	μg/L
2,3-Dichlorophenol	576-24-9	0.5	ND	μg/L
2,4-Dichlorophenol	120-83-2	0.5	ND	μg/L
2,5-Dichlorophenol	583-78-8	0.5	ND	μg/L
2,6-Dichlorophenol	87-65-0	0.5	ND	μg/L
3,4-Dichlorophenol	95-77-2	0.5	ND	μg/L
3,5- Dichlorophenol	591-35-5	0.5	ND	μg/L
2,3,4-Trichlorophenol	15950-66-0	0.5	ND	μg/L
2,3,5-Trichlorophenol	933-78-8	0.5	ND	μg/L

TEST REPORT (TEXTILES)

2,3,6-Trichlorophenol	933-75-5	0.5	ND	μg/L
2,4,5-Trichlorophenol	95-95-4	0.5	ND	μg/L
2,4,6-Trichlorophenol	88-06-2	0.5	ND	μg/L
3,4,5-Trichlorophenol	609-19-8	0.5	ND	μg/L
2,3,4,5-Tetrachlorophenol	4901-51-3	0.5	ND	μg/L
2,3,4,6-Tetrachlorophenol	58-90-2	0.5	ND	μg/L
2,3,5,6-Tetrachlorophenol	935-95-5	0.5	ND	μg/L
Pentachlorophenol (PCP)	87-86-5	0.5	ND	μg/L

Number: BGDT23051736

Remark: ND = Not detected (less than reporting limit)

6. <u>Dimethyl Formamide (DMFa)</u>

With reference to EPA 8015, EPA 8270E.

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
Dimethyl formamide; N,N-dimethylformamide (DMFa) (*)	68-12-2	1000	ND	μg/L

Remark: ND = Not detected (less than reporting limit)

(*) = Sample and report for mock leather.

7. <u>Dyes – Carcinogenic or Equivalent Concern</u>

By Liquid extraction, LC-MS analysis.

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
Basic violet 3 with >0.1% of Michler's Ketone	548-62-9	500	ND	μg/L
C.I. Acid Red 26	3761-53-3	500	ND	μg/L
C.I. Acid Violet 49	1694-09-3	500	ND	μg/L
C.I. Basic Blue 26 (with Michler's Ketone > 0.1%)	2580-56-5	500	ND	μg/L
C.I. Basic Green 4 (malachite green chloride)	569-64-2	500	ND	μg/L
C.I. Basic Green 4 (malachite green oxalate)	2437-29-8	500	ND	μg/L
C.I. Basic Green 4 (malachite green)	10309-95-2	500	ND	μg/L
C.I. Basic Red 9	569-61-9	500	ND	μg/L
C.I. Basic Violet 14	632-99-5	500	ND	μg/L
C.I. Direct Black 38	1937-37-7	500	ND	μg/L
C.I. Direct Blue 6	2602-46-2	500	ND	μg/L
C.I. Direct Red 28	573-58-0	500	ND	μg/L
C.I. Disperse Blue 1	2475-45-8	500	ND	μg/L
C.I. Disperse Blue 3	2475-46-9	500	ND	μg/L
Disperse Orange 11	82-28-0	500	ND	μg/L

TEST REPORT (TEXTILES)

8. <u>Dyes – Disperse (Allergenic)</u>

By Liquid extraction, LC-MS analysis.

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
Disperse Blue 102	12222-97-8	50	ND	μg/L
Disperse Blue 106	12223-01-7	50	ND	μg/L
Disperse Blue 124	61951-51-7	50	ND	μg/L
Disperse Blue 26	3860-63-7	50	ND	μg/L
Disperse Blue 35	12222-75-2 56524-77-7	50	ND	μg/L
Disperse Blue 7	3179-90-6	50	ND	μg/L
Disperse Brown 1	23355-64-8	50	ND	μg/L
Disperse Orange 1	2581-69-3	50	ND	μg/L
Disperse Orange 3	730-40-5	50	ND	μg/L
Disperse Orange 37/59/76	13301-61-6	50	ND	μg/L
Disperse Red 1	2872-52-8	50	ND	μg/L
Disperse Red 11	2872-48-2	50	ND	μg/L
Disperse Red 17	3179-89-3	50	ND	μg/L
Disperse Yellow 1	119-15-3	50	ND	μg/L
Disperse Yellow 3	2832-40-8	50	ND	μg/L
Disperse Yellow 39	12236-29-2	50	ND	μg/L
Disperse Yellow 49	54824-37-2	50	ND	μg/L
Disperse Yellow 9	6373-73-5	50	ND	μg/L

Number: BGDT23051736

Remark: ND = Not detected (less than reporting limit)

9. Dyes – Navy Blue Colourant

By Liquid extraction, LC-MS analysis.

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
Component 1: C39H23Cl-CrN7O12S 2Na	118685-33-9	500	ND	μg/L
Component 2: C46H-30CrN10O20S2 3Na	Not Allocated	500	ND	μg/L

TEST REPORT (TEXTILES)

10. Flame retardants

Other flame retardant substances: With reference to USEPA 8270E, ISO 22032, USEPA 527 and USEPA 8321B, Dichloromethane extraction GC-MS or LC-MS-MS analysis.

Number: BGDT23051736

Borate salt: determined as total boron via ICP analysis.

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
2,2-Bis(bromomethyl)-1,3-propanediol (BBMP)	3296-90-0	25	ND	μg/L
Bis(2,3-dibromopropyl) phosphate (BIS)	5412-25-9	25	ND	μg/L
Decabromodiphenyl ether (DecaBDE)	1163-19-5	25	ND	μg/L
Hexabromocyclododecane (HBCDD)	3194-55-6	25	ND	μg/L
Octabromodiphenyl ehter (OctaBDE)	32536-52-0	25	ND	μg/L
Pentabromodiphenyl ether (PentaBDE)	32534-81-9	25	ND	μg/L
Polybromobiphenyls (PBBs)	59536-65-1	25	ND	μg/L
Tetrabromobisphenol A (TBBPA)	79-94-7	25	ND	μg/L
Tris-(2-chloro-1-methylethyl) phosphate (TCPP)	13674-84-5	25	ND	μg/L
Tris(1-aziridinyl)phosphine oxide) (TEPA)	545-55-1	25	ND	μg/L
Tris(1,3-dichloro-isopropyl) phosphate (TDCP)	13674-87-8	25	ND	μg/L
Tris(2-chloroethyl) phosphate (TCEP)	115-96-8	25	ND	μg/L
Tris(2,3-dibromopropyl) phosphate (TRIS)	126-72-7	25	ND	μg/L
Decabromobiphenyl (DecaBB)	13654-09-6	25	ND	μg/L
Dibromobiphenyls (DiBB)	Multiple	25	ND	μg/L
Octabromobiphenyls (OctaBB)	Multiple	25	ND	μg/L
Dibromopropylether	21850-44-2	25	ND	μg/L
Heptabromodiphenyl ether (HeptaBDE)	68928-80-3	25	ND	μg/L
Hexabromodiphenyl ether (HexaBDE)	36483-60-0	25	ND	μg/L
Monobromobiphenyls (MonoBB)	Multiple	25	ND	μg/L
Monobromodiphenylethers (MonoBDEs)	Multiple	25	ND	μg/L
Nonabromobiphenyls (NonaBB)	Multiple	25	ND	μg/L
Nonabromodiphenyl ether (NonaBDE)	63936-56-1	25	ND	μg/L
Tetrabromodiphenyl ether (TetraBDE)	40088-47-9	25	ND	μg/L
Tribromodiphenylethers (TriBDEs)	Multiple	25	ND	μg/L
Boric acid	10043-35-3 11113-50-1	100 in Boron	ND	μg/L
Diboron trioxide	1303-86-2	100 in Boron	ND	μg/L
Disodium octaborate	12008-41-2	100 in Boron	ND	μg/L
Disodium tetraborate anhydrous	1303-96-4 1330-43-4	100 in Boron	ND	μg/L
Tetraboron disodium heptaoxide, hydrate	12267-73-1	100 in Boron	ND	μg/L

TEST REPORT (TEXTILES)

11. Glycols / Glycol Ethers

With reference to US EPA 8270E, Liquid extraction, LC-MS or GC-MS analysis.

Chemical substances	CAS no.	Reporting limit (μg/L)	Untreated wastewater	Unit
2-ethoxyethanol	110-80-5	50	ND	μg/L
2-ethoxyethyl acetate	111-15-9	50	ND	μg/L
2-methoxyethanol	109-86-4	50	ND	μg/L
2-methoxyethylacetate	110-49-6	50	ND	μg/L
2-methoxypropylacetate	70657-70-4	50	ND	μg/L
Bis(2-methoxyethyl)-ether	111-96-6	50	ND	μg/L
Ethylene glycol dimethyl ether	110-71-4	50	ND	μg/L
Triethylene glycol dimethyl ether	112-49-2	50	ND	μg/L

Number: BGDT23051736

Remark: ND = Not detected (less than reporting limit)

12. <u>Halogenated solvents</u>

With reference to USEPA 8260D, Headspace GC-MS or Purge and trap GC-MS analysis.

Chemical substances	CAS no.	Reporting limit (μg/L)	Untreated wastewater	Unit
1,2-Dichloroethane	107-06-2	1	ND	μg/L
Methylene chloride	75-09-2	1	ND	μg/L
Tetrachloroethylene	127-18-4	1	ND	μg/L
Trichloroethylene	79-01-6	1	ND	μg/L

Remark: ND = Not detected (less than reporting limit)

13. Organotin compounds

With reference to ISO 17353, Derivatisation with NaB (C2H5)4, with GC-MS analysis.

Chemical substances	CAS no.	Reporting limit (μg/L)	Untreated wastewater	Unit
Dipropyltin compounds (DPT)	Multiple	0.01	ND	μg/L
Mono-, di- and tri-butyltin derivatives	Multiple	0.01	ND	μg/L
Mono, di-, and tri-methyltin derivatives	Multiple	0.01	ND	μg/L
Mono, di-, and tri-octyltin derivatives	Multiple	0.01	ND	μg/L
Mono, di-, and tri-phenyltin derivatives	Multiple	0.01	ND	μg/L
Tetrabutyltin compounds (TeBT)	Multiple	0.01	ND	μg/L
Tripropyltin Compounds (TPT)	Multiple	0.01	ND	μg/L
Tetraoctyltin compounds (TeOT)	Multiple	0.01	ND	μg/L
Tricyclohexyltin (TCyHT)	Multiple	0.01	ND	μg/L
Tetraethyltin Compounds (TeET)	Multiple	0.01	ND	μg/L

TEST REPORT (TEXTILES)

14. Other/Miscellaneous Chemicals

Others: With reference to Liquid extraction, LC-MS-MS analysis. Borate salt: determined as total boron and total zinc via ICP analysis.

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
AEEA [2-(2-aminoethylamino)ethanol]	111-41-1	500	ND	μg/L
Bisphenol A	80-05-7	10	ND	μg/L
Thiourea	62-56-6	50	ND	μg/L
Quinoline	91-22-5	50	ND	μg/L
Borate, zinc salt	12767-90-7	100 in Boron	ND	μg/L

Number: BGDT23051736

Remark: ND = Not detected (less than reporting limit)

15. Perfluorinated & polyfluorinated chemicals (PFCs)

PFCs: With reference to EPA 537:2020 with LC-MSMS

FTOH: With reference to BS EN 12673-1999, EPA 8270, GC-MS, Derivatization with acetic anhydride followed by GC-

 MS

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
Perfluorooctane sulfonate (PFOS) and related substances, Perfluorooctanoic acid (PFOA)	Multiple	0.01	ND	μg/L
Perfluorooctanoic acid (PFOA) related substances	Multiple	1	ND	μg/L

Remark: ND = Not detected (less than reporting limit)

16. Phthalates – including all other esters of ortho-phthalic acid

With reference to USEPA 8270E, ISO 18856, Dichloromethane extraction GC-MS analysis.

Chemical substances	CAS no.	Reporting limit (μg/L)	Untreated wastewater	Unit
1,2-benzenedicarboxylic acid, di-C6-8-branched alkyl esters, C7-rich (DIHP)	71888-89-6	10	ND	μg/L
1,2-benzenedicarboxylic acid, di-C7-11- branched and linear alkyl esters (DHNUP)	68515-42-4	10	ND	μg/L
Bis(2-methoxyethyl) phthalate (DMEP)	117-82-8	10	ND	μg/L
Butyl benzyl phthalate (BBP)	85-68-7	10	ND	μg/L
Di-cyclohexyl phthalate (DCHP)	84-61-7	10	ND	μg/L
Di-iso-decyl phthalate (DIDP)	26761-40-0	10	ND	μg/L
Di-iso-octyl phthalate (DIOP)	27554-26-3	10	ND	μg/L

TEST REPORT (TEXTILES)

Di icabutul ahthalata (DIDD)	04.00.5	10	ND	110/1
Di-isobutyl phthalate (DIBP)	84-69-5	10	ND	μg/L
Di-isononyl phthalate (DINP)	28553-12-0	10	ND	μg/L
Di-n-hexyl phthalate (DnHP)	84-75-3	10	ND	μg/L
Di-n-octyl phthalate (DNOP)	117-84-0	10	ND	μg/L
Di-n-pentylphthalates	131-18-0	10	ND	μg/L
Di-n-propyl phthalate (DPRP)	131-16-8	10	ND	μg/L
Di(ethylhexyl) phthalate (DEHP)	117-81-7	10	ND	μg/L
Dibutyl phthalate (DBP)	84-74-2	10	ND	μg/L
Diethyl phthalate (DEP)	84-66-2	10	ND	μg/L
Diisopentylphthalates	605-50-5	10	ND	μg/L
Dinonyl phthalate (DNP)	84-76-4	10	ND	μg/L

Number: BGDT23051736

Remark: ND = Not detected (less than reporting limit)

17. Polycyclic aromatic hydrocarbons (PAHs)

With reference to US EPA 8270E, DIN 38407-39, solvent extraction GC-MS analysis.

Chemical substances	CAS no.	Reporting	Untreated	Unit
Chemical substances	C/15 110.	limit (μg/L)	wastewater	
Acenaphthene	83-32-9	1	ND	μg/L
Acenaphthylene	208-96-8	1	ND	μg/L
Anthracene	120-12-7	1	ND	μg/L
Benzo[a]anthracene	56-55-3	1	ND	μg/L
Benzo[a]pyrene (BaP)	50-32-8	1	ND	μg/L
Benzo[b]fluoranthene	205-99-2	1	ND	μg/L
Benzo[e]pyrene	192-97-2	1	ND	μg/L
Benzo[ghi]perylene	191-24-2	1	ND	μg/L
Benzo[j]fluoranthene	205-82-3	1	ND	μg/L
Benzo[k]fluoranthene	207-08-9	1	ND	μg/L
Chrysene	218-01-9	1	ND	μg/L
Dibenz[a,h]anthracene	53-70-3	1	ND	μg/L
Fluoranthene	206-44-0	1	ND	μg/L
Fluorene	86-73-7	1	ND	μg/L
Indeno[1,2,3-cd]pyrene	193-39-5	1	ND	μg/L
Naphthalene	91-20-3	1	ND	μg/L
Phenanthrene	85-01-8	1	ND	μg/L
Pyrene	129-00-0	1	ND	μg/L

TEST REPORT (TEXTILES)

18. Restricted Aromatic Amines (Cleavable from Azo-colourants)

With reference to reduction step with sodium dithionite, solvent extraction, EPA 8270E and ISO 14362-1 with GC-MS and LC-MS-MS analysis.

Number: BGDT23051736

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
2-Naphthylamine	91-59-8	0.1	ND	μg/L
2-Naphthylammoniumacetate	553-00-4	0.1	ND	μg/L
2,4-Xylidine	95-68-1	0.1	ND	μg/L
2,4,5-Trimethylaniline	137-17-7	0.1	ND	μg/L
2,4,5-Trimethylaniline hydrochloride	21436-97-5	0.1	ND	μg/L
2,6-Xylidine	87-62-7	0.1	ND	μg/L
3,3'-Dichlorobenzidine	91-94-1	0.1	ND	μg/L
3,3'-Dimethoxybenzidine	119-90-4	0.1	ND	μg/L
3,3'-Dimethylbenzidine	119-93-7	0.1	ND	μg/L
4-Aminoazobenzene	60-09-3	0.1	ND	μg/L
4-Aminodiphenyl	92-67-1	0.1	ND	μg/L
4-Chloro-o-toluidine	95-69-2	0.1	ND	μg/L
4-Chloro-o-toluidinium chloride	3165-93-3	0.1	ND	μg/L
4-Chloroaniline	106-47-8	0.1	ND	μg/L
4-methoxy-m-phenylene diammonium sulphate; 2,4-diaminoanisole sulphate	39156-41-7	0.1	ND	μg/L
4-methoxy-m-phenylenediamine	615-05-4	0.1	ND	μg/L
4-methyl-m-phenylenediamine	95-80-7	0.1	ND	μg/L
4,4'-Methylene-bis(2-chloroaniline)	101-14-4	0.1	ND	μg/L
4,4'-methylenedi-o-toluidine	838-88-0	0.1	ND	μg/L
4,4'-methylenedianiline	101-77-9	0.1	ND	μg/L
4,4'-Oxydianiline	101-80-4	0.1	ND	μg/L
4,4'-Thiodianiline	139-65-1	0.1	ND	μg/L
5-Nitro-o-toluidine	99-55-8	0.1	ND	μg/L
6-methoxy-m-toluidine	120-71-8	0.1	ND	μg/L
Benzidine	92-87-5	0.1	ND	μg/L
o-Aminoazotoluene	97-56-3	0.1	ND	μg/L
o-Anisidine	90-04-0	0.1	ND	μg/L
o-Toluidine	95-53-4	0.1	ND	μg/L

TEST REPORT (TEXTILES)

19. <u>UV Absorbers</u>

With reference to USEPA 8270, ISO 22032, USEPA 527 and USEPA 8321B, dichloromethane extraction GC-MS or LC-MS-MS analysis.

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
2-(2H-benzotriazol-2-yl)-4-(tert-butyl)-6- (sec- butyl) phenol (UV-350)	36437-37-3	100	ND	μg/L
2-(2H-benzotriazol-2-yl)-4,6- ditertpentylphenol (UV-328)	25973-55-1	100	ND	μg/L
2-benzotriazol-2-yl-4,6-di-tertbutylphenol (UV-320)	3846-71-7	100	ND	μg/L
2,4-Di-tert-butyl-6-(5- chlorobenzotriazole-2-yl) phenol (UV-327)	3864-99-1	100	ND	μg/L

Number: BGDT23051736

Remark: ND = Not detected (less than reporting limit)

20. <u>Volatile organic compounds (VOCs)</u>

With reference to ISO 11423-1 Headspace or Purge and trap, GC-MS analysis. USEPA 8260D, add ISO 20595 static headspace for determination of VOC in wastewater

With reference to ISO 11423-1 Headspace or Purge and trap, GC-MS analysis. EPA 8270, BS EN 12673-1999.

With reference to HJ 1067 or EPA 8260D or ISO 11423-1.

Chemical substances	CAS no.	Reporting limit (µg/L)	Untreated wastewater	Unit
Benzene	71-43-2	1	ND	μg/L
m-cresol	108-39-4	1	ND	μg/L
o-cresol	95-48-7	1	ND	μg/L
p-cresol	106-44-5	1	ND	μg/L
Xylene	1330-20-7	1	ND	μg/L
Toluene (*)	108-88-3	1	ND	μg/L

Remark: ND = Not detected (less than reporting limit)

(*) = Sample and report for mock leather.

TEST REPORT (TEXTILES)

21. Heavy metals

With reference to ISO 17294, ISO 18412, US EPA 200.8, USEPA 6010C, USEPA 6020A, USEPA 218.6, USEPA 200.8-SIM USEPA 6020A-SIM, USEPA 245.1, USEPA 245.7, HJ 700, GB 7467, GB 7475, GB 11912. GB 11907, GB 7472, HJ 597, HJ 694, IS 3025 (Part 65), IS 3025 (Part 52), IS 3025 (Part 41), IS 3025 (Part 42), IS 3025 (Part 47), IS 3025 (Part 54), IS 3025 (Part 48), IS 3025 (Part 48),

Number: BGDT23051736

Chemical		Limit		Legal *	Reporting		
substances	Foundational	Progressive	Aspirational	Requirem ent	limit (mg/L)	Effluent	Unit
Antimony	0.1 mg/L	0.05 mg/L	0.01 mg/L	-	0.01	ND	mg/L
Chromium (VI)	0.05 mg/L	0.005 mg/L	0.001 mg/L	1	0.001	ND	mg/L
Barium	Samı	ole and report	only	1	0.01	ND	mg/L
Selenium	Samı	ole and report	only	1	0.01	ND	mg/L
Tin	Samı	ole and report	only	-	0.01	ND	mg/L
Arsenic	0.05 mg/L	0.01 mg/L	0.005 mg/L	-	0.005	ND	mg/L
Chromium (total)	0.2 mg/L	0.1 mg/L	0.05 mg/L	0.5 mg/L	0.05	ND	mg/L
Cobalt	0.05 mg/L	0.02 mg/L	0.01 mg/L	0.5 mg/L	0.01	ND	mg/L
Cadmium	0.1 mg/L	0.05 mg/L	0.01 mg/L	0.02 mg/L	0.01	ND	mg/L
Copper	1 mg/L	0.5 mg/L	0.25 mg/L	-	0.25	ND	mg/L
Lead	0.1 mg/L	0.05 mg/L	0.01 mg/L	0.1 mg/L	0.01	ND	mg/L
Nickel	0.2 mg/L	0.1 mg/L	0.05 mg/L	1 mg/L	0.05	ND	mg/L
Silver	0.1 mg/L	0.05 mg/L	0.005 mg/L	-	0.005	ND	mg/L
Zinc	5.0 mg/L	1.0 mg/L	0.5 mg/L	-	0.5	ND	mg/L
Mercury	0.01 mg/L	0.005 mg/L	0.001 mg/L	-	0.001	ND	mg/L

^{*} Regulation/Standard information for discharged wastewater as well as the limitation value (or contractual limit value agreed by CETP) for the required parameters (mandatory).

TEST REPORT (TEXTILES)

22. **Conventional parameters**

		Limit			Legal*	Reporting		
Parameters	Test method	Foundational	Progressive	Aspirational	Require ment	limit	Effluent	Unit
рН	ISO 10523 / USEPA 150.1 / SM 4500-H+ / HJ 1147 / IS 3025 (Part 11) Electrometric method only		6-9		6-9	N/A	7.6	[f]
Temperature difference	DIN 38 404-4 / USEPA 170.1 / SM 2550 / GB/T 13195 / IS 3025 (Part 9)	△+15 °C	△+10 °C	△+5 °C	△+5 °C	N/A	△+5	^[f] °C
E.coli	SM 9221B presumtive, confirm positive with SM9221 F or G	126 MPN/100-ml			-	1.8 MPN/ 100-ml	12	MPN /100- ml
Colour (436 nm; 525 nm; 620 nm)	ISO 7887-B	7;5;3 [m ⁻¹]	5;3;2 [m ⁻¹]	2;1;1 [m ⁻¹]	-	N/A	0.3; 0.2; 0.2	[m ⁻¹]
Persistent Foam	/		o indication o foam in recei		-	N/A	Absent	[f]
Wastewater Flowrate	/	reisistent	N/A	viiig water	-	N/A	86	^[f] m ³ / day
Ammonium- Nitrogen	ISO 11732 / ISO 7150 / USEPA 350.1 / USEPA 350.3 / SM 4500 NH3 - D, E, F, G, or H / HJ 535 / IS 3025 (Part 34)	10 mg/L	1 mg/L	0.5 mg/L	-	0.5 mg/L	ND	mg/L
AOX	ISO 9562 / HACH LCK 390 Merck 1.00675.0001 / HJ/T 83	3 mg/L	0.5 mg/L	0.1 mg/L	-	0.1 mg/L	ND	mg/L
Biochemical Oxygen Demand (BOD ₅)	ISO 5815-1 / USEPA 405.1 / SM 5210-B / HJ 505 / IS 3035 (Part 44)	30 mg/L	15 mg/L	8 mg/L	30 mg/L	8 mg/L	ND	mg/L

TEST REPORT (TEXTILES)

	1	T		1	1	T		,
Chemical Oxygen Demand (COD)	ISO 6060 / ISO 15705 / USEPA 410.4 / SM 5220- D / HJ 828 / GB/T 11914 e / IS 3025 (Part 58)	150 mg/L	80 mg/L	40 mg/L	200 mg/L	40 mg/L	ND	mg/L
Dissolved Oxygen (DO)	ISO 5814 / EPA 360.1 / SM 4500- O-G / HJ 506	Samp	le and report	tonly	-	N/A	5.8	mg/L
Oil and grease	ISO 9377-2 / SM 5520-B/C / USEPA 1664 revision B / HJ 637 / IS 3025 (Part 39)	10 mg/L	2 mg/L	0.5 mg/L	10 mg/L	0.5 mg/L	ND	mg/L
Total Phenols / Phenol Index	ISO 6439 / SM 5530-B/C / HJ 503 / IS 3025 (Part 43)	0.5 mg/L	0.01 mg/L	0.001 mg/L	1 mg/L	0.001 mg/L	0.008	mg/L
Total Chlorine	ISO 7393-2 / USEPA 330.5 / SM4500-CI-G / HJ 586	Samp	le and report	t only	-	0.2 mg/L	ND	ff mg/L
Total Dissolved Solids (TDS)	SM 2540-C / USEPA 160.1 / GB/T 5750.4-2006 / IS 3025 (Part 16)	Samp	Sample and report only		2100 mg/L	10 mg/L	156	mg/L
Total- Nitrogen	ISO 11905 - Part 1 / ISO 29441 / USEPA 351.2 / SM 4500P-J / SM 4500N-B / SM 4500N-C / HJ 636 / IS 3025 (Part 34)	20 mg/L	10 mg/L	5 mg/L	-	5 mg/L	ND	mg/L
Total- Phosphorus	ISO 17294 / ISO 11885 / ISO 6878 / USEPA 365.4 / SM 4500P-J / USEPA 200.7 / USEPA 6010C / USEPA 6020A / GB/T 11893 / IS 3025 (Part 31) / IS 3025 (Part 65)	3 mg/L	0.5 mg/L	0.1 mg/L	-	0.1 mg/L	ND	mg/L
Total Suspended Solids (TSS)	ISO 11923 / USEPA 160.2 / SM 2540D / GB/T 11901 / IS3025 (Part 17)	50 mg/L	15 mg/L	5 mg/L	100 mg/L	5 mg/L	ND	mg/L

TEST REPORT (TEXTILES)

Chloride	ISO 10304-1 / ISO 15923-1 / SM 4110-B / SM 4110-C / SM 4500-CI D or E / USEPA 300 / HJ 84-2016 / IS 3025 (Part 32)	Samp	le and report	only	-	10 mg/L	18	mg/L
Cyanide, total	ISO 6703 – 1, 2, 3 / ISO 14403 – 1, 2 / USEPA 335.2, APHA 4500-CN / HJ484	0.2 mg/L	0.1 mg/L	0.05 mg/L	-	0.05 mg/L	ND	mg/L
Sulfate	ISO 10304-1 / ISO 15923-1 / SM 4500 SO4, E, F, G / SM 4100 B, C / USEPA 300 / USEPA 9038 / HJ 84-2016 / SM 4110-B / IS 3025 (Part 24)	Samp	le and report	only	-	10 mg/L	74	mg/L
Sulfide	ISO 10530 / SM 4500-S2-D, E,G, or I / HJ 1226 / IS 3025 (Part 29)	0.5 mg/L	0.05 mg/L	0.01 mg/L	2 mg/L	0.01 mg/L	ND	mg/L
Sulfite	ISO 10304-3 / SM 4500-SO32-C / HJ 84-2016	2 mg/L	0.5 mg/L	0.2 mg/L	-	0.2 mg/L	ND	mg/L

Number: BGDT23051736

Remark:

ND = Not detected (less than reporting limit)

 \triangle is the degree above ambient temperature of receiving water body.

@ = Maximum holding time exceeded.

Additional Color Test by using local standard required method:

As Per applicant's request, testing was conducted on composite sample based on ZDHC WWSG V2.1.

Parameters	Test Method	Legal Requirement*	Effluent
Color	ISO 7887-C :2011	150 Pt-Co	<10 Pt-Co

^{*} Legal requirement based on Regulation/Standard information for discharged wastewater as well as the limitation value (or contractual limit value agreed by CETP) for the required parameters (mandatory), it was quoted for reference only.

^{*} Legal requirement based on Regulation/Standard information for discharged wastewater as well as the limitation value (or contractual limit value agreed by CETP) for the required parameters (mandatory). It is quoted only when the test method used is identical to the ZDHC WWG listed method.

[[]f] = On-site test by sampler.

TEST REPORT (TEXTILES)

Sample / Sludge

Sludge flux (weight/time) and / or flow data volume/time: N/A

1. Heavy metals

Other heavy metals: With reference to acid/peroxide digestion EPA 3050, EPA 6010D or EPA 6020B, HJ 803 with ICP/OES, or ICP-MS analysis.

Number: BGDT23051736

Chromium VI: With reference to alkaline digestion USEPA 3060a, USEPA 7196 or

USEPA 7199, HJ 1082 with Colourimetric UV/VIS, or Colourimetric IC analysis.

Mercury: With reference to Dissolution, acid digestion USEPA 7473, USEPA 7471 b, or USEPA 3051a,

USEPA 7471b, or USEPA 6020b, GB/T 22105.1, HJ 923 with CVAA or ICP MS analysis.

Chemical substances	Reporting limit (Dry weight) (mg/kg)	Sludge (Dry weight)	Unit
Antimony	5	ND	mg/kg
Arsenic	5	ND	mg/kg
Barium	200	ND	mg/kg
Cadmium	1	ND	mg/kg
Cobalt	400	ND	mg/kg
Copper	50	ND	mg/kg
Lead	5	ND	mg/kg
Nickel	20	ND	mg/kg
Selenium	5	ND	mg/kg
Silver	50	ND	mg/kg
Total Chromium	50	ND	mg/kg
Zinc	400	ND	mg/kg
Chromium (VI)	20	ND	mg/kg
Mercury	1	ND	mg/kg

Remark: ND = Not detected (less than reporting limit) @ = Maximum holding time exceeded.

2. Anions

With reference to USEPA 9013, USEPA 9014, USEPA 9213, HJ745 with Colourimetry or ISE analysis.

Chemical substances	Reporting limit (Dry weight) (mg/kg)	Sludge (Dry weight)	Unit
Cyanide	20	ND	mg/kg

Remark: ND = Not detected (less than reporting limit)

@ = Maximum holding time exceeded.

TEST REPORT (TEXTILES)

3. Conventional parameters

Chemical substances	Test method	Reporting limit (Dry weight)	Sludge (Dry weight)	Unit
рН	USEPA SW 9045D / HJ962	N/A	6.6	N/A
% Solids	USEPA 160.3 / HJ613	N/A	87	%
Paint Filter Test ^	USEPA SW-846 / USEPA 9095B	N/A	Pass	N/A
Fecal Coliform	USEPA 1681	10 MPN/g	180	MPN/g

Number: BGDT23051736

Remark: ND = Not detected (less than reporting limit)

4. Alkylphenol (AP) and Alkylphenol Ethoxylates (APEOs): including all isomers

With reference to USEPA 3540/3541, USEPA 3550, ISO 18857-2, ASTM D7065, ISO 18254-1, with GC-MS and LC-MS-MS analysis.

Chemical substances	CAS no.	Reporting limit (Dry weight) (mg/kg)	Sludge (Dry weight)	Unit
	9016-45-9;			
	26027-38-3;			
Nonylphenol ethoxylates (NPEO)	37205-87-1;	0.4	ND	mg/kg
	68412-54-4;			
	127087-87-0			
	104-40-5;			
Nanylahanal (ND) miyad isamara	11066-49-2;	0.4	ND	ma/ka
Nonylphenol (NP), mixed isomers	25154-52-3;	0.4	ND	mg/kg
	84852-15-3			
	9002-93-1;			
Octylphenol ethoxylates (OPEO)	9036-19-5;	0.4	ND	mg/kg
	68987-90-6			
	140-66-9;			
Octylphenol (OP), mixed isomers	1806-26-4;	0.4	ND	mg/kg
	27193-28-8			

^{@ =} Maximum holding time exceeded.

^{^ -} Report "Pass" when Paint Filter Test does not contain free liquid; Report "Fail" when Paint Filter Test does contain free liquid.

TEST REPORT (TEXTILES)

5. Polycyclic aromatic hydrocarbons (PAHs)

With reference to US EPA 3540/3541, US EPA 3550, US EPA 3640, US EPA 827, HJ 805-2016 with GC-MS analysis.

Number: BGDT23051736

Chemical substances	CAS no.	Reporting limit (Dry weight) (mg/kg)	Sludge (Dry weight)	Unit
Acenaphthene	83-32-9	0.2	ND	mg/kg
Acenaphthylene	208-96-8	0.2	ND	mg/kg
Anthracene	120-12-7	0.2	ND	mg/kg
Benzo[a]anthracene	56-55-3	0.2	ND	mg/kg
Benzo[a]pyrene (BaP)	50-32-8	0.2	ND	mg/kg
Benzo[b]fluoranthene	205-99-2	0.2	ND	mg/kg
Benzo[e]pyrene	192-97-2	0.2	ND	mg/kg
Benzo[ghi]perylene	191-24-2	0.2	ND	mg/kg
Benzo[j]fluoranthene	205-82-3	0.2	ND	mg/kg
Benzo[k]fluoranthene	207-08-9	0.2	ND	mg/kg
Chrysene	218-01-9	0.2	ND	mg/kg
Dibenz[a,h]anthracene	53-70-3	0.2	ND	mg/kg
Fluoranthene	206-44-0	0.2	ND	mg/kg
Fluorene	86-73-7	0.2	ND	mg/kg
Indeno[1,2,3-cd]pyrene	193-39-5	0.2	ND	mg/kg
Naphthalene	91-20-3	0.2	ND	mg/kg
Phenanthrene	85-01-8	0.2	ND	mg/kg
Pyrene	129-00-0	0.2	ND	mg/kg

Remark: ND = Not detected (less than reporting limit)

6. Chlorotoluenes

With reference to US EPA 3540/3541, US EPA 3550, US EPA 3650, US EPA 827, HJ 605 with GC-MS analysis.

Chemical substances	CAS no.	Reporting limit (Dry weight) (mg/kg)	Sludge (Dry weight)	Unit
Other isomers of mono-, di-, tri-, tetra- and penta- chlorotoluene	Multiple	0.2	ND	mg/kg

TEST REPORT (TEXTILES)

7. Leachate heavy metals

With reference to toxicity leachate extraction procedure EPA 1311 followed by Acid digestion with ICP-OES, ICP-MS or USEPA 200.7, USEPA 200.8, USEPA 6010c, USEPA 6020a analysis.

Number: BGDT23051736

Chromium VI: With reference to toxicity leachate extraction procedure EPA 1311 followed by ISO 18412, USEPA 7196 or USEPA 7199 Colourimetric UV/VIS, or Colourimetric IC analysis.

Mercury: With reference to toxicity leachate extraction procedure EPA 1311 followed by acid digestion EPA 7471b, EPA 3051a with ISO 12846 or ISO 17852, EPA 6020b CVAA or ICP MS analysis.

Chemical substances	Reporting limit (mg/L)	Sludge	Unit
Arsenic	0.5	N/A	mg/L
Cadmium	0.15	N/A	mg/L
Total Chromium	5	N/A	mg/L
Lead	0.5	N/A	mg/L
Antimony	0.6	N/A	mg/L
Barium	35	N/A	mg/L
Cobalt	80	N/A	mg/L
Copper	10	N/A	mg/L
Nickel	3.5	N/A	mg/L
Selenium	0.5	N/A	mg/L
Silver	5	N/A	mg/L
Zinc	50	N/A	mg/L
Chromium (VI)	2.5	N/A	mg/L
Mercury	0.05	N/A	mg/L

TEST REPORT (TEXTILES)

Appendix 1: reference to ZDHC WWSG v2.1 Table 4B

Number: BGDT23051736

Parameters				Di	sposal path	ways		
	Total metals and	A and B	С	D	E	F	G	G
	anions threshold	(Leachate	(Leachate	(Leachate	(Leachate	(Leachate	(Leachate	(Total metals
	values (mg/kg)	result in	result in	result in	result in	result in	result in	limit in
		mg/L)	mg/L)	mg/L)	mg/L)	mg/L)	mg/L)	mg/kg)
Arsenic	10		5	2.75	0.5	0.5	0.5	75
Cadmium	3		1	0.58	0.15	0.15	0.15	85
Total	100		15	10	_	_	_	2000
Chromium	100		15	10	5	5	5	3000
Lead	10	-	5	2.75	0.5	0.5	0.5	840
Antimony	12		15	7.8	0.6	0.6	0.6	Sample and
Barium	700	Report	100	67.5	35	35	35	report only
Cobalt	1600	only if	80	80	80	80	80	
Copper	200	required	25	17.5	10	10	10	4300
Nickel	70	to test	20	11.75	3.5	3.5	3.5	420
Selenium	10	-	1	0.75	0.5	0.5	0.5	100
Cilver	100		_	-	_	_	_	Sample and
Silver	100		5	5	5	5	5	report only
Zinc	1000		250	150	50	50	50	7500
Chromium VI	50		5	3.75	2.5	2.5	2.5	50
Mercury	1		0.2	0.125	0.05	0.05	0.05	57

Appendix 2: reference to ZDHC WWSG v2.1 Table 4C

Parameters			Dispo	sal pathways					
	A and B	С	D	E	F	G			
рН		5 – 11 s.u.	5 – 11 s.u.	5 – 11 s.u.	6.5 – 9 s.u.	6.5 – 9 s.u.			
% Solids			Sample and	Sample and	Sample and	Sample and			
			report only	report only	report only	report only			
Fecal Coliform			report only	report only	< 1000	(MPN/g)			
Paint Filter Test	Sample		Da	·+	Sample and				
		Sample	га	ss Paint filter tes) i	report only			
Alkylphenol (AP) and		and							
Alkylphenol Ethoxylates	•	report		< 0.4 n	ng/kg				
(APEOs): including all isomers	J Omy	only							
Polycyclic									
Aromatic	Solids cal Coliform int Filter Test Sample and report only Sample and report only Supplementation of the series of the serie		< 0.2 mg/kg						
Hydrocarbons (PAHs)				< 0.2 II	IIB/ NB				
Chlorotoluenes									

Appendix 2: reference to ZDHC WWSG v2.1 Table 4D

Parameters		Dispo	sal pathways	3		
	A and B	С	D	E	F	G
Cyanide	Report only if required to test	100 mg/kg	85 mg/kg	70 mg/kg	70 mg/kg	70 mg/kg

TEST REPORT (TEXTILES)

Photo of sampling points:

Sampling point - Untreated wastewater

Sampling point - Effluent

Number: BGDT23051736

Sampling point - Sludge

Photo of samples:

Sample - Untreated wastewater

Sample - Effluent

Sample - Sludge

TEST REPORT (TEXTILES)

Attachment – sampling protocol for wastewater & sludge:

Sam	pling Pro	tocol for	r Waste	water a	ind Sludg	e acc. Z	DHC SAF	2.1 inc	I. Apdx. E			
Custome		50	Cole	duc	111.							
Address:		Bena	idench	ala,	Keowa,	maon	na, Sn	eepun,	Gazipun			
Facility ty	ype & name:											
Facility lo address:		Sami	as ab									
Operator	r of facility:	Same as above. Ashrafun Nahan										
Cause of	sampling:	Buyer Requirements (ZDHe) Date of sampling: 19-04-23										
Sample G (if availab	seneral ID			□ indirec	discharge t discharge quid Discharge (2	□ with	out treatment pre-treatment own ETP	Clov4	· Dreain			
Discharge o	description:	I/961230	94090	□ MMCF								
Weather	conditions:	on sampling day: Sunny on day before: Sunny,										
	Enter sample Sample Deta	tails (also see	page 2) or O indirect Enter samp discharge.	olling time(s) for Field paramet xcept on clien	ers are not t's request.	with Home Hydraulic Rete (= Volume of t If HRT > 12h, g	ogenisation / Eq ention Time (HR tank [m³] / Flow grab sampling fo	qualisation Tan tT): rate [m³/h]) or both untrea	sk (HT) present: h sted and treated			
Dischar	t O direct: ge Enter sampli Sample Deta	tails (also see ing times in als (page 2), and d parameters.	or O indirect Enter samp discharge, required, e	olling time(s) for Field paramet	ers are not t's request.	with Home Hydraulic Rete (= Volume of t If HRT > 12h, g	ogenisation / Eq ention Time (HR tank [m³] / Flow grab sampling fo om a point afte	qualisation Tan tT): rate [m³/h]) or both untrea	h ited and treated			
Untreat Sludgest >1000 °C	t O direct: Re Enter sample Sample Deta measure field ted Wastewater With below dispo O B C offsite Landfil	tails (also see	e page 2) or O indirect Enter samp d discharge. required, e	biling time(s) for Field parametric xcept on client and the first and th	ers are not it's request. of sludge:	with Homo Hydraulic Rete = Volume of t If HRT > 12h, g wastewater fr MMC MMC	ogenisation / Eq ention Time (HF ank [m³] / Flow grab sampling fo om a point afte F i / weeks	qualisation Tan kT): rate [m²/h]) rate http://rate.com/h] rate HT could	h ited and treated			
Untreat Sludge of A >1000 °C incinerat	t O direct: Re Enter sample Sample Deta measure field ted Wastewater With below dispo O B C offsite Landfil	tails (also see	e page 2) or O indirect Enter samp discharge, required, e	olling time(s) for Field paramet xcept on clien hing Water Age O D cts Land O °C limits	of sludge : C	with Homo Hydraulic Rete (= Volume of t If HRT > 12h, g wastewater fr MMC	ogenisation / Eq ention Time (HR lank [m³] / Flow grab sampling for om a point after for a point after for weeks dding products CO per facility	qualisation Tan RT): rate [m²/h]) or both untrea or the HT could	h Ited and treated I be applied. O G Land application			
Untreat Sludge volu Sludge volu	t O direct: The Enter sample Sample Deta measure field ted Wastewater With below dispose O B Coffsite Landfittion significume produced:	tails (also see	e page 2) or O indirect Enter samp discharge. required, e	olling time(s) for Field paramet xcept on clien hing Water Age O D cts Land O °C limits	of sludge : C fill with inced control pro	with Homo Hydraulic Reto = Volume of t If HRT > 12h, g wastewater fr MMC MMC I S eneration / Buil cessed <1000	ogenisation / Eq ention Time (HF ank [m³] / Flow grab sampling fo om a point afte F / weeks	rualisation Tan RT): rate [m²/h]) rate [m²/h]) or both untrea or the HT could O F Landfill with no control O measure	h Ited and treated discount for the dis			
Untreat Sludge volu Sludge volu Process (t O direct: The Enter sample Sample Deta measure field ted Wastewater With below dispose O B Coffsite Landfittion significume produced:	tails (also see	e page 2) or O indirect Enter samp discharge. required, e	olling time(s) for Field parametric xcept on clien and water Age O D Cts Land O "C limits Oother unit (sp	of sludge : C fill with inced control pro	with Homo Hydraulic Reto = Volume of t If HRT > 12h, g wastewater fr MMC MMC I S eneration / Buil cessed <1000	ogenisation / Eq ention Time (HF cank [m³] / Flow grab sampling for om a point after own a point after weeks dding products	rualisation Tan RT): rate [m²/h]) rate [m²/h]) or both untrea or the HT could O F Landfill with no control O measure	ted and treated a be applied. O G Land application d O estimated			
Untreat Sludge of A > 1000 °C incinerat Sludge voluth of ampling	t O direct: The sample Deta measure field ted Wastewater With below dispo O B C offsite Landfition ume produced: Chemical Untreated Wastewater: Indirect Indirect Untreated Untreated	ing times in alls (page 2), and diparameters. asal pathway: Il with cant control O liquid	e page 2) or O indirect Enter same discharge. required, e Incon C Building produi processed >100 O solid (po	olling time(s) for Field paramet xcept on clien hing Water Age O D Cts Land 100 °C Limits Cother unit (sp	of sludge : C of sludge : C fill with ed control pro ecify):	with Homo Hydraulic Retr (= Volume of t If HRT > 12h, g wastewater fr MMC 15 neration / Buil cessed <1000	ogenisation / Eq ention Time (HR cank [m³] / Flow grab sampling for form a point after c.F. / weeks idding products O per facility info	qualisation Tan TT): rate [m²/h]) or both untrea or the HT could O F Landfill with no control O measure	ted and treated a be applied. O G Land application d O estimated			
Untreat Discharge Untreat A >1000 °C	t O direct: The sample Deta measure field ted Wastewater With below dispo O B C offsite Landfition ume produced: Chemical Untreated Wastewater: Indirect Indirect Untreated Untreated	tails (also see	e page 2) or O indirect Enter same discharge. required, e Incon C Building produi processed >100 O solid (po	olling time(s) for Field paramet xcept on clien and the xcept on clien and the xcept on clien and the xcept on clien and xcept on xc	of sludge: of slu	with Homo Hydraulic Retr (= Volume of t If HRT > 12h, g wastewater fr MMC 15 neration / Buil cessed <1000	ogenisation / Eq ention Time (HR cank [m³] / Flow grab sampling for form a point after c.F. / weeks idding products O per facility info	rualisation Tan TT): rate [m²/h]) or both untrea or the HT could O F Landfill with no control O measure or from w or Grab:	h ated and treated dibe applied. O G Land application d O estimated varehouse/storage Sludge:			
Untreat Sludge volu Process (imes of ampling lappicable) or direct dach	t O direct: The Enter sample Deta measure fiele ted Wastewater With below dispo O B C offsite Landflition Chemical Untreated Wastewater: Indirect Discharge: Incoming Water: tharge, see page 2]	ing times in ails (page 2), and d parameters. asal pathway: Il with cant control O liquid 10:30	e page 2) or O indirect Enter samp discharge. required, g Incon O C Building produprocessed > 100 O solid (po	oling time(s) for Field paramet xcept on clien along Water Age O D Land limits Oother unit (sp. wder/granula) 12:30	of sludge: of slu	with Homo Hydraulic Retr (= Volume of t If HRT > 12h, g wastewater fr MMC 15 neration / Buil cessed <1000	ogenisation / Eq ention Time (HR cank [m³] / Flow grab sampling for form a point after c.F. / weeks idding products O per facility info	rualisation Tan RT): rate [m²/h]) rate [m²/h]) or both untrea or the HT could O F Landfill with no control O measure or Grab:	h ated and treated dibe applied. O G Land application d O estimated varehouse/storage Sludge:			
Untreat Sludge volu Process (imes of ampling lappicable) or direct dach	t O direct: ge Enter sample Sample Deta measure fiele ted Wastewater with below dispo O B C offsite Landfii tion Signific ume produced: Chemical Untreated Wastewater: Indirect Discharge: Incoming Water:	ing times in ails (page 2), and d parameters. asal pathway: Il with cant control O liquid 10:30	page 2) or O indirect Enter samp discharge. required, e Incom O C Building product processed >100 m²/h OL/sec C O solid (po 2 11: \$0 2	obling time(s) for Field parameter xcept on client xcept and limits and xcept xc	of sludge: of slu	with Homo Hydraulic Rete = Volume of t If HRT > 12h, g wastewater fr MMC 15	ogenisation / Eqention Time (HF lank [m³] / Flow grab sampling form a point after from a point a point after from a point a point after from a point a poin	rualisation Tan RT): rate [m²/h]) rate [m²/h]) Or both untrea or the HT could O F Landfill with no control O measure or from w or Grab: or Grab:	h Inted and treated if be applied. O G Land application in the control of the			
Untreat Sludge volu Process (imes of ampling lappicable) or direct dach	t O direct: The Enter sample Deta measure fiele ted Wastewater With below dispo O B C offsite Landflition Chemical Untreated Wastewater: Indirect Discharge: Incoming Water: tharge, see page 2]	ing times in ails (page 2), and d parameters. asal pathway: Il with cant control O liquid 10:30	page 2) or O indirect Enter samp discharge. required, e Incom C Building product processed >100 O solid (po 2 11: 30 2 GPS coordi Incoming N	oling time(s) for Field parameter accept on client water Age OD Dorts Land limits Cother unit (sp. 22:30) 3 3 3 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	of sludge: of slu	with Homo Hydraulic Reto = Volume of t if HRT > 12h, g wastewater fr MMC 15 aug increased < 1000 'in 514:30	ogenisation / Eqention Time (HF cank [m³] / Flow grab sampling form a point after form a	rualisation Tan RT): rate [m²/h]) or both untrea or the HT could O F Landfill with no control O measure or Grab: or Grab:	h Inted and treated if be applied. O G Land application in the control of the			
Untreat Sludge volu Process (Imes of ampling tapplicable) or direct disch	t O direct: The Enter sample Deta measure fiele ted Wastewater With below dispo O B C offsite Landflition Chemical Untreated Wastewater: Indirect Discharge: Incoming Water: tharge, see page 2]	ing times in ails (page 2), and d parameters. asal pathway: Il with cant control O liquid 10:30	page 2) or O indirect Enter samp discharge. required, e Incom C Building product processed >100 O solid (po 2 11: 30 2 GPS coordi Incoming N	Dolling time(s) for Field parameter vacept on client vacept	of sludge: of slu	with Homo Hydraulic Rete = Volume of t If HRT > 12h, g wastewater fr D MMC 15 avs ineration / Builcessed <1000 of the total 5 14:30	ogenisation / Eqention Time (HF Lank [m³] / Flow grab sampling form a point after from a	rualisation Tan RT): rate [m²/h]) rate [m²/h]) Or both untrea or the HT could O F Landfill with no control O measure or from w or Grab: or Grab:	h Inted and treated if be applied. O G Land application in the control of the			

TEST REPORT (TEXTILES)

Composite Sam		arameters			ed <u>only for</u> ample	direct	discharge	g. If client	requests				, use belov	v fields.	
					dumn for A	veraged	Readings	and field	s at right)	Volum	e of aliqui	ot(s):	1	000 "	nl.
Time of taking discrete sample	11110		212100		313100		41410	50	515:0	0	61610	10	or Gr	ged Readings ab Sample:	
pH:	7.	6	7.0 30 25	á	7.7	7	719	,	7.6	;	7.6		7.6		
Temp. WW discharge of receiving wa	30 m	*c	30	*C	30	*C	31	"C	30	*C	30	*C	3		°C
Flow rate:	2.74	37 21 may 6	3.66		1.00	.c	26	, , , , ,	25	*C	25	*C	3.60×	594	2
Dissolved Oxygen:	6.5	mg/L	CA	m-yn.	5.9	myn	3,51	£ m*/n	5168	m°/h	100	m*/h	= 86		
Total Chlorine:			ND	me/l	ND	ma/i	NO	ma/t	NID.	me/i	NV	mg/L		430	
Persistent foam:			O yes										.,4	9	
Use comment field if	number of s	amples is a	reater than	six, or i	fabove field	is are of	herwise n	ot sufficie	nL						
Sampling technic				10000	with beak	er/bow	1 0	other:						als/w	C
Wastewater Flo													1/3	Zer	Ž.
System:	4	I Flow m	eter (in fa	acility)		□ Pi	pe (O)) Flume	(U)			K. W. OA	1
Diameter [cm]													-	G Grove	4
Water Depth [cm														-	
Flow Speed [cm/s	erl														
ntreated fluent								Grey						O yes On	
								trans	percov	it					
ield Testing QA/C		al Com	ala kausa	a confe	in la	h C				47000				-	
H I	ab Conti 7	· O	pie targe	et van	ie La	ib Cor		mpie n	neasure	ed value Accuracy [%				y [%]	
otal Chiorine	- 3	5mg/	L					54 m	Alt				10-8		
ther observations:		-			- 4-	=	10.01	1 . 4	J,						
					,										
ditional comments	(e.g., abbr	eviations	used, alte	ernative	ely measu	red flo	w and re	adings, e	etc.):		2011		-		

TEST REPORT (TEXTILES)

TEST REPORT (TEXTILES)

End of report

This report is made solely on the basis of instructions and/or information and materials supplied by you (the Client), It is not intended to be a recommendation for any specific course of action. Intertek shall not accept a duty of care or any other responsibility to any person other than the Client in respect of this report and only accepts liability to the Client insofar as that which is expressly contained in the terms and conditions governing the provision of services to you. Intertek makes no warranties or representations either express or implied with respect to this report save as provided for in those terms and conditions. We have aimed to conduct the Review on a diligent, truthful and careful basis and we do not accept any liability to you for any direct or in-direct loss arising out of or in connection with this report, in contract, tort, by statute or otherwise, except in the event of our gross negligence or willful misconduct.