

Page 1 of 38

Test Report No.:	178178876a 001 Page 1 of 38									
Client:	SHAN	SHANDONG HENGTAI TEXTILE CO. LTD.								
		of Tengfei Iong Provi	Road, Eco ince	nomia	c Deve	lopment Zo	ne, Yish	ui C	County, Liny	ri City,
Factory Details Factory Name Factory Address (with geographic coordinates) On-site ETP Discharge Type of Wastewater Destination of Wastewater Destin	Details me Shandong Hengtai Textile CO., LTD dress (with geographical West of Tengfei Road, Economic Development Zone, Yishui County, Linyi City, Shandong Province D Y Type of Wastewater Indirect discharge of Wastewater Linyi Runze Water co.,LTD tett discharge Linyi Runze Water co.,LTD ublic wastewater treatment Linyi Runze Water co.,LTD tettischarge HuBu Xi Cun, Yi shui, Linyi City y HuBu Xi Cun, Yi shui, Linyi City p Jotatils ceiving Date 2023-03-16 riod 2023-03-16 - 2023-03-31									
Sample Type	Tota	l Volume	1		2	3	4		5	6
Discharged Wastewater	1	.22L	09:50	10):47	11:52	12:50)	13:50	14:50
Raw Wastewater	1:	5.24L	10:02	11	:10	12:05	13:07	7	14:06	15:03
Incoming Water		-	-		-	-	-		-	-
Sludge	5	500g	12:30		-	-	-		-	-
Overall Rating		Discharg	ged Wastew	ater	R	aw Wastewa	ater		Sludg	ge
Conventional Parameters / A Metals	s / Anion / Fulfill Aspirational Limit			Not Tested			Comply			
MRSL Parameters	Not Tested			Comply			Report Only			
Legal Compliance	Not Tested Not Tested Not Tes				sted					

Specifications ZDHC Wastewater Guidelines Version 2.1 (November 2022)

For and on behalf of TÜV Rheinland/CCIC (Qingdao) Co., Ltd.

2023-03-31

Echo Xu / Department Manager

Date

Name/Position

Sample information is provided by customer. Test result is drawn according to the kind and extent of tests performed.

This test report relates to the above mentioned test sample. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any safety mark on this or similar products.

"Decision Rule" document announced in our website (https://www.tuv.com/landingpage/en/qm-gcn/) describes the statement of conformity and its rule of enforcement for test results are applicable throughout this test report.

TÜV Rheinland/CCIC (Qingdao) Co., Ltd. · 6F, No.2 Bldg., No.175 Zhuzhou Rd., Qingdao 266101, Shandong, P.R. China Tel.: +86- 532- 8870 6655 · Fax: +86- 532- 8870 6669 · Email: info@qd.chn.tuv.com ·Web:www.chn.tuv.com

Page 2 of 38

Result Summary :

Conventional Parameters	Incoming Water	Discharged Wastewater	Raw Wastewater	Sludge
pH Value^	-	-	-	Report Only
Anion - Cyanide^	-	-	-	Comply
Heavy Metals^	-	Aspirational	-	Report Only
Leachate Heavy Metals^	-	-	-	Report Only
%Solid^	-	-	-	Report Only
Paint Filter Test^	-	-	-	Report Only
Fecal Coliform [^]	-	-	-	Report Only
Manufacturing Restricted Substances List (MRSL)	Incoming Water	Discharged Wastewater	Raw Wastewater	Sludge
Alkylphenol (AP) and Alkylphenol Ethoxylates (APEOs)^	-	-	Comply	Report Only
Anti-Microbials & Biocides^	-	-	Comply	-
Chlorinated Paraffins^	-	-	Comply	-
Chlorobenzenes and Chlorotoluenes^	-	-	Comply	Report Only
Chlorophenols^	-	-	Comply	-
Dimethyl formamide (DMFa) [^]	-	-	Comply	-
Dyes – Carcinogenic or Equivalent Concern^	-	-	Comply	-
Dyes – Disperse (Sensitizing)^	-	-	Comply	-
Dyes – Navy Blue Colorant^	-	-	Comply	-
Flame Retardants^	-	-	Comply	-
Glycols/ Glycol Ethers^	-	-	Comply	-
Halogenated Solvents [^]	-	-	Comply	-
Organotin Compounds^	-	-	Comply	-
Other / Miscellaneous Chemicals^	-	-	Comply	-
Perfluorinated and Polyfluorinated Chemicals (PFCs)^	-	-	Comply	-
Phthalates - Including all other esters of phthalic acid ^A	-	-	Comply	-
Polycyclic Aromatic Hydrocarbons (PAHs)^	-	-	Comply	Report Only
Restricted Aromatic Amines(Cleavable from Azo)^	-	-	Comply	-
UV Absorbers^	-	-	Comply	-
Volatile Organic Compounds (VOC)^	-	-	Comply	-

Note:

Aspirational = Fulfill Aspirational Limit Foundational = Fulfill Foundational Limit Comply = Comply with ZDHC Limit - = Not Tested Progressive = Fulfill Progressive Limit Exceed = Exceed Foundational Limit Not Comply = Not Comply with ZDHC Limit

Page 3 of 38

Material List:

Field ID	Sample Type	Sample Description
R001	Waste water	Raw Wastewater*
D001	Waste water	Discharge Wastewater*
S001	Sludge	Sludge*(Type A)

Notes:

* Discharge Wastewater:	Wastewater that is released from a supplier, either directly to the environment (including but not limited to: water bodies, land application/irrigation), or to a wastewater treatment system beyond the supplier's property boundaries.
* Direct Discharge:	A point source that discharges wastewater to stream, lakes, oceans, or other receiving bodies. Distribution of wastewater onto land is also considered a type of direct discharge. Municipal bodies and suppliers that introduce pollution through a defined conveyance or system such as outlet pipes are direct dischargers.
* Indirect Discharge:	The discharge of wastewater through a sanitary or industrial wastewater sewer system to a central or common effluent treatment plant (CETP) not owned and/ or operated by the supplier discharging the pollutants.
* Raw Wastewater: (Untreated Wastewater)	Wastewater that has not yet been treated prior to direct or indirect discharge, or recycling efforts. This wastewater therefore does not meet the quality standards for beneficial use.
* Sludge:	The solid or semi-solid material separated during the wastewater treatment process, including septic and Zero Liquid Discharge (ZLD) systems.
* Incoming Water:	Water that is supplied to a manufacturing process, usually withdrawn from surface water bodies, groundwater, collected from rainfall, supplied by municipalities, etc.
Туре А:	Offsite Incineration at > 1000°C.
Туре В:	Landfill with Significant Control Measures.
Туре С:	Building Products Processed at > 1000°C.
Type D:	Landfill with Limited Control Measures.
Туре Е	Offsite Incineration and Building Products Processed at < 1000°C.
Type F:	Landfill with No Control Measures.
Туре G:	Land Application.

Page 4 of 38

1.pH Value[^]

				Sample No.	S001
Parameter	Parameter Code	Test Method	Unit	RL	Result
pH Value	PH	HJ 962	NONE	NA	6.92
Conclusion					Report Only

Abbreviation: NA = Not Applicable

Remark:

Baramatar	ZDHC Wastewater Limit					
Parameter	Foundational	Progressive	Aspirational			
pH Value	6-9					

Parameter	ZDHC Sludge Limit							
Sludge Type	А	В	С	D	Е	F	G	
pH Value	Report Only	Report Only	5-11	5-11	5-11	6.5-9	6.5-9	

Page 5 of 38

2.Anion - Cyanide[^]

				Sample No.	S001
Parameter	Parameter Code	Test Method	Unit	RL	Result
Anion - Cyanide	57-12-5	HJ 745	mg/kg	10	< RL
Conclusion					Comply

Abbreviation: < =less than

RL =reporting limit mg/L = milligram per liter mg/kg = milligram per kilogram

Remark:

Parameter	ZDHC	ZDHC Limit (mg/kg)		
	Foundational	Progressive	Aspirational	Sludge
Anion - Cyanide	0.2	0.1	0.05	20

Page 6 of 38

3.Heavy Metals[^]

				Sample No.	D001
Parameter	Parameter Code	Test Method	Unit	RL	Result
Arsenic (As)	Arsenic	US EPA 6020a	mg/L	0.001	< RL
Cadmium (Cd)	Cadmium	US EPA 6020a	mg/L	0.001	< RL
Chromium (Cr VI)	Chromium VI	GB 7467	mg/L	0.001	< RL
Lead (Pb)	Lead	US EPA 6020a	mg/L	0.001	0.003
Mercury (Hg)	Mercury	US EPA 6020a	mg/L	0.001	< RL
Conclusion					Fulfill Aspirational Limit

				Sample No.	S001
Parameter	Parameter Code	Test Method	Unit	RL	Result
Antimony (Sb)	Antimony	HJ 803	mg/kg	1	103
Chromium (Cr, total)	Chromium Total	HJ 803	mg/kg	1	96
Cobalt (Co)	Cobalt	US EPA 7196	mg/kg	1	6
Copper (Cu)	Copper	HJ 803	mg/kg	1	336
Nickel (Ni)	Nickel	HJ 803	mg/kg	1	29
Silver (Ag)	Silver	US EPA 6020b	mg/kg	1	< RL
Zinc (Zn)	Zinc	HJ 803	mg/kg	1	6980
Arsenic (As)	Arsenic	HJ 803	mg/kg	1	4
Cadmium (Cd)	Cadmium	HJ 803	mg/kg	1	< RL
Chromium (Cr VI)	Chromium VI	US EPA 7196	mg/kg	1	4.2
Lead (Pb)	Lead	HJ 803	mg/kg	1	8
Mercury (Hg)	Mercury	US EPA 6020b	mg/kg	0.1	< RL
Barium (Ba)	Barium	US EPA 6020b	mg/kg	1	41
Selenium (Se)	Selenium	US EPA 6020b	mg/kg	1	< RL
Conclusion					Report Only

Abbreviation: < =less than

RL =reporting limit mg/L = milligram per liter mg/kg = milligram per kilogram

Page 7 of 38

Remark:

The limits according to ZDHC limit (Table 2 & 4A & 4B of ZDHC Wastewater Guidelines Version 2.1 issued in November 2022):

	ZDHC Lim	it for Wastewa	ater (mg/L)	ZDHC Limit for Sludge (mg/kg)			
Parameter	Foundational	Progressive	Aspirational	Disposal pathway A-F	Disposal pathway G	Total Metals Threshold Values**	
Antimony (Sb)	0.1	0.05	0.01		Sample and report only	12	
Chromium (Cr, total)	0.2	0.1	0.05		3000	100	
Cobalt (Co)	0.05	0.02	0.01		Sample and report only	1600	
Copper (Cu)	1	0.5	0.25		4300	200	
Nickel (Ni)	0.2	0.1	0.05		420	70	
Silver (Ag)	0.1	0.05	0.005		Sample and report only	100	
Zinc (Zn)	5.0	1.0	0.5	Report only	7500	1000	
Arsenic (As)	0.05	0.01	0.005		75	10	
Cadmium (Cd)	0.1	0.05	0.01		85	3	
Chromium (Cr VI)	0.05	0.005	0.001		50	50	
Lead (Pb)	0.1	0.05	0.01		840	10	
Mercury (Hg)	0.01	0.005	0.001		57	1	
Barium (Ba)	Sample and report only				Sample and report only	700	
Selenium (Se)	Sample and report only				100	10	
Tin (Sn)	Sam	ple and report	only		NA	NA	

* For polyester wet processing facilities Foundational, Progressive and Aspirational limits do not yet apply (unless required by law or voluntarily adopted).

** if the Total Metals for Sludge exceeded the Total Metals Threshold Values (mg/kg) given in this table, proceed with Leachate Heavy Metal.

Page 8 of 38

4.Leachate Heavy Metals^

				Sample No.	S001
Parameter	Parameter Code	Test Method	Unit	RL	Result
Arsenic (As)	Arsenic	US EPA 1311, US EPA 3051A, US EPA 200.8	mg/L	0.5	< RL
Cadmium (Cd)	Cadmium	US EPA 1311, US EPA 3051A, US EPA 200.8	mg/L	0.15	< RL
Chromium (Cr, total)	Chromium Total	US EPA 1311, US EPA 3051A, US EPA 200.8	mg/L	1	< RL
Lead (Pb)	Lead	US EPA 1311, US EPA 3051A, US EPA 200.8	mg/L	0.5	< RL
Antimony (Sb)	Antimony	US EPA 1311, US EPA 3051A, US EPA 200.8	mg/L	0.5	1.3
Barium (Ba)	Barium	US EPA 1311, US EPA 3051A, US EPA 200.8	mg/L	10	< RL
Cobalt (Co)	Cobalt	US EPA 1311, US EPA 3051A, US EPA 200.8	mg/L	10	< RL
Copper (Cu)	Copper	US EPA 1311, US EPA 3051A, US EPA 200.8	mg/L	1	< RL
Nickel (Ni)	Nickel	US EPA 1311, US EPA 3051A, US EPA 200.8	mg/L	1	< RL
Selenium (Se)	Selenium	US EPA 1311, US EPA 3051A, US EPA 200.8	mg/L	0.5	< RL
Silver (Ag)	Silver	US EPA 1311, US EPA 3051A, US EPA 200.8	mg/L	1	< RL
Zinc (Zn)	Zinc	US EPA 1311, US EPA 3051A, US EPA 200.8	mg/L	10	124
Chromium (Cr VI)	Chromium VI	US EPA 1311, US EPA 7196	mg/L	2	< RL
Mercury (Hg)	Mercury	US EPA 1311, US EPA 3051A, US EPA 6020B	mg/L	0.05	< RL
Conclusion					Report Only

Abbreviation: < = less than RL = reporting limit mg/L = milligram per liter

Page 9 of 38

Remark:

Parameter			ZDHC Slu	idge Limit	(mg/L)		
Sludge Type	А	В	С	D	Е	F	G
Arsenic (As)			5	2.75	0.5	0.5	0.5
Cadmium (Cd)			1	0.58	0.15	0.15	0.15
Chromium (Cr, total)			15	10	5	5	5
Lead (Pb)			5	2.75	0.5	0.5	0.5
Antimony (Sb)			15	7.8	0.6	0.6	0.6
Barium (Ba)			100	67.5	35	35	35
Cobalt (Co)	Report	Only if	80	80	80	80	80
Copper (Cu)	Required		25	17.5	10	10	10
Nickel (Ni)			20	11.75	3.5	3.5	3.5
Selenium (Se)			1	0.75	0.5	0.5	0.5
Silver (Ag)			5	5	5	5	5
Zinc (Zn)			250	150	50	50	50
Chromium (Cr VI)			5	3.75	2.5	2.5	2.5
Mercury (Hg)			0.2	0.125	0.05	0.05	0.05

Page 10 of 38

5.%Solids^

				Sample No.	S001
Parameter	Parameter Code	Test Method	Unit	RL	Result
%Solids	%Solids	HJ 613 at 105°C	%	NA	19.9
Conclusion					Report Only

Abbreviation: % = percentage NA = Not Applicable

Remark:

Parameter		ZDHC Sludge Limit							
Sludge Type	A	A B C D E F G							
%Solids			Sample	e and Repo	ort Only				

Page 11 of 38

6.Paint Filter Test^

				Sample No.	S001
Parameter	Parameter Code	Test Method	Unit	RL	Result
Paint Filter Test	Free Liquid	EPA 9095B	NA	NA	Not visible
Conclusion					Report Only

Abbreviation: NA = Not Applicable

Remark:

Parameter	ZDHC Sludge Limit							
Sludge Type	А	A B C D E F						
Paint Filter Test	Sample	e and Repo	ort Only	Pass	Paint Filter	⁻ Test	Sample and Report Only	

Page 12 of 38

7.Fecal Coliform[^]

				Sample No.	S001
Parameter	Parameter Code	Test Method	Unit	RL	Result
Fecal Coliform	Fecal Coliform	EPA 1681	MPN/g	10	1.5*10
Conclusion					Report Only

Abbreviation: MPN/g = Most Probable Number per gram

Remark:

Parameter		ZDHC Sludge Limit (MPN/g)							
Sludge Type	А	A B C D E F G							
Fecal Coliform		Sample and Report Only 1000 1000							

Page 13 of 38

8.Alkylphenol (AP) and Alkylphenol Ethoxylates (APEOs): Including All Isomers^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
Nonylphenol (NP), mixed isomers	104-40-5 25154-52-3 11066-49-2 84852-15-3	ISO 18857-2	µg/L	5	5	< RL
Octylphenol (OP), mixed isomers	140-66-9 1806-26-4 27193-28-8	ISO 18857-2	µg/L	5	5	< RL
Nonylphenol ethoxylates (NPEO)	9016-45-9 26027-38-3 37205-87-1 68412-54-4 127087-87-0	ISO 18254-1, ASTM D7065	µg/L	5	5	< RL
Octylphenol ethoxylates (OPEO)	9002-93-1 9036-19-5 68987-90-6	ISO 18254-1, ASTM D7065	µg/L	5	5	< RL
Conclusion					*	Comply

				Sample No.	S001
Parameter	Parameter	Test Method	Unit	RL	Result
	Code				
Nonylphenol (NP),	104-40-5	ISO 18857-2	mg/kg	0.2	< RL
mixed isomers	25154-52-3				
	11066-49-2				
	84852-15-3				
Octylphenol (OP), mixed	140-66-9	ISO 18857-2	mg/kg	0.2	< RL
isomers	1806-26-4				
	27193-28-8				
Nonylphenol ethoxylates	9016-45-9	ISO 18254-1, ASTM D7065	mg/kg	0.2	< RL
(NPEO)	26027-38-3				
	37205-87-1				
	68412-54-4				
	127087-87-0				
Octylphenol ethoxylates	9002-93-1	ISO 18254-1, ASTM D7065	mg/kg	0.2	< RL
(OPEO)	9036-19-5				
	68987-90-6				
Conclusion					Report Only

Abbreviation: < =less than RL =reporting limit µg/L = microgram per liter mg/kg = milligram per kilogram

Page 14 of 38

Remark:

Parameter		ZDHC Sludge Limit (mg/kg)							
Sludge Type	А	A B C D E F G							
AP & APEOs	Sample	e and Repo	ort Only	0.4	0.4	0.4	0.4		

Page 15 of 38

9.Anti-Microbials & Biocides^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
o-Phenylphenol (+Salts)	90-43-7	US EPA 8270E	µg/L	100	100	< RL
Triclosan	3380-34-5	US EPA 8270E	µg/L	100	100	< RL
Permethrin	Multiple	US EPA 8270E	µg/L	500	500	< RL
Conclusion						Comply

Abbreviation: < = less than

RL = reporting limit $\mu g/L$ = microgram per liter

Page 16 of 38

10.Chlorinated Paraffins^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
Medium-chain Chlorinated paraffins (MCCPs) (C14-C17)	85535-85-9	US EPA 3510, ISO 18219-2	µg/L	5	5	< RL
Short-chain Chlorinated paraffins (SCCPs) (C10- C13)	85535-84-8	US EPA 3510, ISO 18219-1	µg/L	5	5	< RL
Conclusion			• •			Comply

Abbreviation: < = less than

RL = reporting limit $\mu g/L$ = microgram per liter

Page 17 of 38

11. Chlorobenzenes and Chlorotoluenes^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
1,2-Dichlorobenzene	95-50-1	US EPA 8260D, 8070E	µg/L	0.2	0.2	< RL
Other isomers of mono, di-, tri-, tetra-, penta- and hexa- Chlorobenzene and mono, di- tri-, tetra- and penta-Chlorotoluene	Multiple	US EPA 8260D, 8070E	µg/L	0.2	0.2	< RL
Conclusion						Comply

				Sample No.	S001
Parameter	Parameter Code	Test Method	Unit	RL	Result
mono, di- tri-, tetra- and penta-Chlorotoluene	Multiple	HJ 605	mg/kg	0.1	< RL
Conclusion					Report Only

Abbreviation: < =less than

RL =reporting limit μ g/L = microgram per liter mg/kg = milligram per kilogram

Remark:

Parameter		ZDHC Sludge Limit (mg/kg)								
Sludge Type	А	A B C D E F G								
mono, di- tri-, tetra- and penta-Chlorotoluene	Sampl	Sample and Report only			0.2	0.2	0.2			

Page 18 of 38

12.Chlorophenols^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
2-Chlorophenol	95-57-8	US EPA 8270E	µg/L	0.5	0.5	< RL
3-chlorophenol	108-43-0	US EPA 8270E	µg/L	0.5	0.5	< RL
4-chlorophenol	106-48-9	US EPA 8270E	µg/L	0.5	0.5	< RL
2,3-Dichlorophenol	576-24-9	US EPA 8270E	µg/L	0.5	0.5	< RL
2,4-Dichlorophenol	120-83-2	US EPA 8270E	µg/L	0.5	0.5	< RL
2,5-Dichlorophenol	583-78-8	US EPA 8270E	µg/L	0.5	0.5	< RL
2,6-Dichlorophenol	87-65-0	US EPA 8270E	µg/L	0.5	0.5	< RL
3,4-Dichlorophenol	95-77-2	US EPA 8270E	µg/L	0.5	0.5	< RL
3,5- Dichlorophenol	591-35-5	US EPA 8270E	µg/L	0.5	0.5	< RL
2,3,4-Trichlorophenol	15950-66-0	US EPA 8270E	µg/L	0.5	0.5	< RL
2,3,5-Trichlorophenol	933-78-8	US EPA 8270E	µg/L	0.5	0.5	< RL
2,3,6-Trichlorophenol	933-75-5	US EPA 8270E	µg/L	0.5	0.5	< RL
2,4,5-Trichlorophenol	95-95-4	US EPA 8270E	µg/L	0.5	0.5	< RL
2,4,6-Trichlorophenol	88-06-2	US EPA 8270E	µg/L	0.5	0.5	< RL
3,4,5-Trichlorophenol	609-19-8	US EPA 8270E	µg/L	0.5	0.5	< RL
2,3,4,5- Tetrachlorophenol	4901-51-3	US EPA 8270E	µg/L	0.5	0.5	< RL
2,3,4,6- Tetrachlorophenol	58-90-2	US EPA 8270E	µg/L	0.5	0.5	< RL
2,3,5,6- Tetrachlorophenol	935-95-5	US EPA 8270E	µg/L	0.5	0.5	< RL
Pentachlorophenol	87-86-5	US EPA 8270E	µg/L	0.5	0.5	< RL
Conclusion	. L					Comply

Abbreviation: < =less than RL =reporting limit µg/L = microgram per liter

Page 19 of 38

13.Dimethyl Formamide (DMFa)^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
Dimethyl formamide (DMFa) *	68-12-2	US EPA 8215, 8270E	µg/L	1000	1000	< RL
Conclusion						Comply

Abbreviation: < = less than RL = reporting limit $\mu g/L$ = microgram per liter

Remark:

* Sample and Report only for mock leather

Page 20 of 38

14.Dyes - Carcinogenic or Equivalent Concern^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
C.I. Direct Black 38	1937-37-7	ISO 16373	µg/L	500	500	< RL
C.I. Direct Blue 6	2602-46-2	ISO 16373	µg/L	500	500	< RL
C.I. Acid Red 26	3761-53-3	ISO 16373	µg/L	500	500	< RL
C.I. Basic Red 9	569-61-9	ISO 16373	µg/L	500	500	< RL
C.I. Direct Red 28	573-58-0	ISO 16373	µg/L	500	500	< RL
C.I. Basic Violet 14	632-99-5	ISO 16373	µg/L	500	500	< RL
C.I. Disperse Blue 1	2475-45-8	ISO 16373	µg/L	500	500	< RL
C.I. Disperse Blue 3	2475-46-9	ISO 16373	µg/L	500	500	< RL
C.I. Basic Blue 26 (with Michler's Ketone > 0.1%)	2580-56-5	ISO 16373	µg/L	500	500	< RL
C.I Basic Green 4 (malachite green chloride)	569-64-2	ISO 16373	µg/L	500	500	< RL
C.I Basic Green 4 (malachite green oxalate)	2437-29-8	ISO 16373	µg/L	500	500	< RL
C.I Basic Green 4 (malachite green)	10309-95-2	ISO 16373	µg/L	500	500	< RL
Disperse Orange 11	82-28-0	ISO 16373	µg/L	500	500	< RL
Basic violet 3 with >0.1% of Michler's Ketone	548-62-9	ISO 16373	µg/L	500	500	< RL
C.I. Acid Viiolet 49	1694-09-3	ISO 16373	µg/L	500	500	< RL
Conclusion			_,		•	Comply

Abbreviation: < =less than RL =reporting limit µg/L = microgram per liter

Page 21 of 38

15.Dyes - Disperse (Sensitizing)^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
Disperse Yellow 1	119-15-3	ISO 16373	µg/L	50	50	< RL
Disperse Blue 102	12222-97-8	ISO 16373	µg/L	50	50	< RL
Disperse Blue 106	12223-01-7	ISO 16373	µg/L	50	50	< RL
Disperse Yellow 39	12236-29-2	ISO 16373	µg/L	50	50	< RL
Disperse Orange 37/59/76	13301-61-6	ISO 16373	µg/L	50	50	< RL
Disperse Brown 1	23355-64-8	ISO 16373	µg/L	50	50	< RL
Disperse Orange 1	2581-69-3	ISO 16373	µg/L	50	50	< RL
Disperse Yellow 3	2832-40-8	ISO 16373	µg/L	50	50	< RL
Disperse Red 11	2872-48-2	ISO 16373	µg/L	50	50	< RL
Disperse Red 1	2872-52-8	ISO 16373	µg/L	50	50	< RL
Disperse Red 17	3179-89-3	ISO 16373	µg/L	50	50	< RL
Disperse Blue 7	3179-90-6	ISO 16373	µg/L	50	50	< RL
Disperse Blue 26	3860-63-7	ISO 16373	µg/L	50	50	< RL
Disperse Yellow 49	54824-37-2	ISO 16373	µg/L	50	50	< RL
Disperse Blue 35	12222-75-2	ISO 16373	µg/L	50	50	< RL
Disperse Blue 124	61951-51-7	ISO 16373	µg/L	50	50	< RL
Disperse Yellow 9	6373-73-5	ISO 16373	µg/L	50	50	< RL
Disperse Orange 3	730-40-5	ISO 16373	µg/L	50	50	< RL
Disperse Blue 35	56524-77-7	ISO 16373	µg/L	50	50	< RL
Conclusion	1		<u> </u>		1	Comply

Abbreviation: < =less than

RL =reporting limit $\mu g/L$ = microgram per liter

Page 22 of 38

16.Dyes - Navy Blue Colorant^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
Component 1: C39H23CI-CrN7O12S 2Na	118685-33-9	ISO 16373	µg/L	500	500	< RL
Component 2: C46H-30CrN10O20S2 3Na	Not Allocated	ISO 16373	µg/L	500	500	< RL
Conclusion	•	•				Comply

Abbreviation: < = less than RL = reporting limit µg/L = microgram per liter

Page 23 of 38

17.Flame Retardants^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
Tris-(2-chloro-ethyl)- phosphate (TCEP)	115-96-8	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Decabromodiphenyl ether (DecaBDE)	1163-19-5	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Tri-(2,3-di-bromo-propyl)- phosphate (TRIS)	126-72-7	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Pentabromodiphenyl ether (PentaBDE)	32534-81-9	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Octabromodiphenyl ether (OctaBDE)	32536-52-0	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Bis-(2,3-di-bromo- propyl)-phosphate (BIS)	5412-25-9	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Tris(1- aziridinyl)phosphine oxide) (TEPA)	545-55-1	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Polybromobiphenyls (PBB)	59536-65-1	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Tetra-bromo-bisphenol-A (TBBPA)	79-94-7	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Hexabromocyclododeca ne(HBCDD)	3194-55-6	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
2,2-bis(bromomethyl)-1,3 -propanediol (BBMP)	3296-90-0	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Tris-(1,3-di-chloro-iso- propyl)-phosphate (TDCP)	13674-87-8	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Tris-(2-chloro-1- methylethyl) phosphate (TCPP)	13674-84-5	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Decabromobiphenyl (DecaBB)	13654-09-6	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Dibromobiphenyls (DiBB)	Multiple	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Octabromobiphenyls (OctaBB)	Multiple	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Tetrabromobisphenol A bis(dibromopropyl ether)	21850-44-2	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Heptabromodiphenyl ether (HeptaBDE)	68928-80-3	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Hexabromodiphenyl ether (HexaBDE)	36483-60-0	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Monobromobiphenyls (MonoBB)	Multiple	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Monobromodiphenylethe rs Multiple (MonoBDEs)	Multiple	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Nonabromobiphenyls (NonaBB)	Multiple	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Nonabromodiphenyl ether (NonaBDE)	63936-56-1	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
Tetrabromodiphenyl ether (TetraBDE)	40088-47-9	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL

Page 24 of 38

Tribromodiphenylethers (TriBDEs)	Multiple	US EPA 8270, ISO 22032, US EPA 527,US EPA 8321B	µg/L	5	25	< RL
	10042 25 21	,		20	100	< RL
Boric acid	10043-35-3;		µg/L	20	100	< KL
	11113-50-1	US EPA 527,US EPA 8321B				
Diboron trioxide	1303-86-2	US EPA 8270, ISO 22032,	µg/L	20	100	< RL
		US EPA 527,US EPA 8321B				
Disodium octaborate	12008-41-2	US EPA 8270, ISO 22032,	µg/L	20	100	< RL
		US EPA 527,US EPA 8321B				
Disodium tetraborate	1303-96-4;	US EPA 8270, ISO 22032,	µg/L	20	100	< RL
anhydrous	1330-43-4	US EPA 527,US EPA 8321B				
Tetraboron disodium	12267-73-1	US EPA 8270, ISO 22032,	µg/L	20	100	< RL
heptaoxide, hydrate		US EPA 527,US EPA 8321B				
Conclusion						

Abbreviation: < =less than

< =less than RL =reporting limit µg/L = microgram per liter

Page 25 of 38

18.Glycols / Glycol Ethers^

					Sample No.	R001	
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result	
Bis(2-methylethyl)ether	111-96-6	US EPA 8270E	µg/L	50	50	< RL	
2-Ethoxyethanol	110-80-5	US EPA 8270E	µg/L	50	50	< RL	
2-Ethoxyethyl acetate	111-15-9	US EPA 8270E	µg/L	50	50	< RL	
Ethylene glycol dimethyl ether	110-71-4	US EPA 8270E	µg/L	50	50	< RL	
2-Methoxyethanol	109-86-4	US EPA 8270E	µg/L	50	50	< RL	
2-Methoxyethyl acetate	110-49-6	US EPA 8270E	µg/L	50	50	< RL	
2-Methoxypropyl acetate	70657-70-4	US EPA 8270E	µg/L	50	50	< RL	
Triethylene glycol dimethyl ether	112-49-2	US EPA 8270E	µg/L	50	50	< RL	
Conclusion							

Abbreviation: < =less than

RL =reporting limit

 $\mu g/L = microgram per liter$

Page 26 of 38

19.Halogenated Solvents^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
1,2-dichloroethane	107-06-2	US EPA 8260D	µg/L	1	1	< RL
Methylene chloride	75-09-2	US EPA 8260D	µg/L	1	1	< RL
Trichloroethylene	79-01-6	US EPA 8260D	µg/L	1	1	< RL
Tetrachloroethylene	127-18-4	US EPA 8260D	µg/L	1	1	< RL
Conclusion	· ·		•			Comply

Abbreviation: < =less than

RL =reporting limit

 $\mu g/L = microgram per liter$

Page 27 of 38

20.Organotin Compounds^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
Mono-,di-and tri-methyltin derivatives	Multiple	ISO 17353	µg/L	0.01	0.01	< RL
Mono-,di-and tri-butyltin derivatives	Multiple	ISO 17353	µg/L	0.01	0.01	< RL
Mono-,di-and tri-phenyltin derivatives	Multiple	ISO 17353	µg/L	0.01	0.01	< RL
Mono-,di-and tri-octyltin derivatives	Multiple	ISO 17353	µg/L	0.01	0.01	< RL
Dipropyltin compounds (DPT)	Multiple	ISO 17353	µg/L	0.01	0.01	< RL
Tetrabutyltin compounds (TeBT)	Multiple	ISO 17353	µg/L	0.01	0.01	< RL
Tripropyltin Compounds (TPT)	Multiple	ISO 17353	µg/L	0.01	0.01	< RL
Tetraoctyltin compounds (TeOT)	Multiple	ISO 17353	µg/L	0.01	0.01	< RL
Tricyclohexyltin (TCyHT)	Multiple	ISO 17353	µg/L	0.01	0.01	< RL
Tetraethyltin Compounds (TeET)	Multiple	ISO 17353	µg/L	0.01	0.01	< RL
Conclusion						Comply

Abbreviation: < =less than RL =reporting limit µg/L = microgram per liter

Page 28 of 38

21.Other / Miscellaneous Chemicals^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
AEEA [2-(2- aminoethylamino) ethanol]	111-41-1	Liquid extraction, LC- MS-MS	µg/L	500	500	< RL
Bisphenol A	80-05-7	Liquid extraction, LC- MS-MS	µg/L	10	10	< RL
Thiourea	62-56-6	Liquid extraction, LC- MS-MS	µg/L	50	50	< RL
Quinoline	91-22-5	Liquid extraction, LC- MS-MS	µg/L	50	50	< RL
Borate, zinc salt	12767-90-7	EPA 6020a	µg/L	50	100	B <rl,zn< RL</rl,zn<
Conclusion	*	·			*	Comply

Abbreviation: < = less than

RL = reporting limit $\mu g/L$ = microgram per liter

Page 29 of 38

22.Perfluorinated and Polyfluorinated Chemicals (PFCs)^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
Perfluorooctane sulfonate (PFOS) and related substances	Multiple	EPA 8270, PFCs: LC- MS-MS FTOH: GC-MS	µg/L	0.01	0.01	< RL
Perfluorooctanoic acid (PFOA) and related substances	Multiple	EPA 8270, PFCs: LC- MS-MS FTOH: GC-MS	µg/L	1	1	< RL
Conclusion						Comply

Abbreviation: < =less than

RL = reporting limit $\mu g/L$ = microgram per liter

Page 30 of 38

23.Phthalates - Including all other esters of phthalic acid^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
Di(ethylhexyl) phthalate (DEHP)	117-81-7	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Bis(2-methoxyethyl) phthalate(DMEP)	117-82-8	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Di-n-octyl phthalate (DNOP)	117-84-0	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Di-iso-decyl phthalate (DIDP)	26761-40-0	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Di-Isononyl Phthalate (DINP)	28553-12-0	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Di-n-hexyl phthalate (DnHP)	84-75-3	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Di-n-butyl phthalate (DBP)	84-74-2	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Butyl benzyl phthalate (BBP)	85-68-7	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Dinonyl phthalate (DNP)	84-76-4	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Diethyl phthalate (DEP)	84-66-2	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Di-n-propyl phthalate (DPRP)	131-16-8	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Di-isobutyl phthalate (DIBP)	84-69-5	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Di-cyclohexyl phthalate (DCHP)	84-61-7	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Di-iso-octyl phthalate (DIOP)	27554-26-3	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
1,2-benzenedicarboxylic acid, di-C7-11-branched and linearalkyl esters (DHNUP)	68515-42-4; 68515-50-4	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
1,2-benzenedicarboxylic acid, di-C6-8-branched alkyl esters, C7-rich (DIHP)	71888-89-6; 84777-06-0	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Di-n-pentylphalates	131-18-0	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Diisopentylphthalates	605-50-5	US EPA 8270E, ISO 18856	µg/L	10	10	< RL
Conclusion						Comply

Abbreviation: < =less than

RL =reporting limit

 $\mu g/L = microgram per liter$

Page 31 of 38

24.Polycyclic Aromatic Hydrocarbons (PAHs)^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
Benzo(a)pyrene	50-32-8	US EPA 8270E	µg/L	1	1	< RL
Anthracene	120-12-7	US EPA 8270E	µg/L	1	1	< RL
Pyrene	129-00-0	US EPA 8270E	µg/L	1	1	< RL
Benzo[ghi]perylene	191-24-2	US EPA 8270E	µg/L	1	1	< RL
Benzo(e)pyrene	192-97-2	US EPA 8270E	µg/L	1	1	< RL
Indeno[1,2,3-cd]pyrene	193-39-5	US EPA 8270E	µg/L	1	1	< RL
Benzo(j)fluoranthene	205-82-3	US EPA 8270E	µg/L	1	1	< RL
Benzo[b]fluoranthene	205-99-2	US EPA 8270E	µg/L	1	1	< RL
Fluoranthene	206-44-0	US EPA 8270E	µg/L	1	1	< RL
Benzo[k]fluoranthene	207-08-9	US EPA 8270E	µg/L	1	1	< RL
Acenaphthylene	208-96-8	US EPA 8270E	µg/L	1	1	< RL
Chrysene	218-01-9	US EPA 8270E	µg/L	1	1	< RL
Dibenz(a,h)anthracene	53-70-3	US EPA 8270E	µg/L	1	1	< RL
Benzo[a]anthracene	56-55-3	US EPA 8270E	µg/L	1	1	< RL
Acenaphthene	83-32-9	US EPA 8270E	µg/L	1	1	< RL
Phenanthrene	85-01-8	US EPA 8270E	µg/L	1	1	< RL
Fluorene	86-73-7	US EPA 8270E	µg/L	1	1	< RL
Naphthalene	91-20-3	US EPA 8270E	µg/L	1	1	< RL
Conclusion	1					Comply

Page 32 of 38

			Ş	Sample No.	S001
Parameter	Parameter Code	Test Method	Unit	RL	Result
Benzo(a)pyrene	50-32-8	HJ 805-2016	mg/kg	0.2	< RL
Anthracene	120-12-7	HJ 805-2016	mg/kg	0.2	< RL
Pyrene	129-00-0	HJ 805-2016	mg/kg	0.2	< RL
Benzo[ghi]perylene	191-24-2	HJ 805-2016	mg/kg	0.2	< RL
Benzo(e)pyrene	192-97-2	HJ 805-2016	mg/kg	0.2	< RL
Indeno[1,2,3-cd]pyrene	193-39-5	HJ 805-2016	mg/kg	0.2	< RL
Benzo(j)fluoranthene	205-82-3	HJ 805-2016	mg/kg	0.2	< RL
Benzo[b]fluoranthene	205-99-2	HJ 805-2016	mg/kg	0.2	< RL
Fluoranthene	206-44-0	HJ 805-2016	mg/kg	0.2	< RL
Benzo[k]fluoranthene	207-08-9	HJ 805-2016	mg/kg	0.2	< RL
Acenaphthylene	208-96-8	HJ 805-2016	mg/kg	0.2	< RL
Chrysene	218-01-9	HJ 805-2016	mg/kg	0.2	< RL
Dibenz(a,h)anthracene	53-70-3	HJ 805-2016	mg/kg	0.2	< RL
Benzo[a]anthracene	56-55-3	HJ 805-2016	mg/kg	0.2	< RL
Acenaphthene	83-32-9	HJ 805-2016	mg/kg	0.2	< RL
Phenanthrene	85-01-8	HJ 805-2016	mg/kg	0.2	< RL
Fluorene	86-73-7	HJ 805-2016	mg/kg	0.2	< RL
Naphthalene	91-20-3	HJ 805-2016	mg/kg	0.2	< RL
Conclusion					Report Only

Abbreviation: < =less than

RL =reporting limit $\mu g/L$ = microgram per liter mg/kg = milligram per kilogram

Remark:

Parameter		ZDHC Sludge Limit (mg/kg)							
Sludge Type	А	A B C D E F G							
PAHs	Sampl	e and Repo	ort only	0.2	0.2	0.2	0.2		

Page 33 of 38

25.Restricted Aromatic Amines(Cleavable from Azo)^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
4,4'-methylene-bis-(2- chloroaniline)	101-14-4	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
4,4'- diaminodiphenylmethane	101-77-9	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
4,4'-oxydianiline	101-80-4	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
4-chloroaniline	106-47-8	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
3,3'-Dimethoxybenzidine	119-90-4	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
3,3'-Dimethylbenzidine	119-93-7	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
6-Methoxy-m-toluidine	120-71-8	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
2,4,5-trimethylaniline	137-17-7	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
4,4'-Thiodianiline	139-65-1	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
4-aminoazobenzene	60-09-03	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
4-methoxy-m- phenylenediamine	615-05-4	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
4,4'-Methylenedi-o- toluidine	838-88-0	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
2,6-xylidine	87-62-7	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
o-anisidine	90-04-0	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
2-naphthylamine	91-59-8	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
3,3'-Dichlorobenzidine	91-94-1	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
4-Aminobiphenyl	92-67-1	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
benzidine	92-87-5	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
o-toluidine	95-53-4	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
2,4-xylidine	95-68-1	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
4-chloro-o-toluidine	95-69-2	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
4-methyl-m- phenylenediamine	95-80-7	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
o-Aminoazotoluene	97-56-3	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
5-nitro-o-toluidine	99-55-8	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
4-chloro-o-toluidinium chloride	3165-93-3	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
2-Naphthylammoniuma cetate	553-00-4	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
4-methoxy-m-phenylene diammonium sulphate	39156-41-7	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
2,4,5-trimethylaniline hydrochloride	21436-97-5	Reduction, EPA 8270	µg/L	0.1	0.1	< RL
Conclusion						Comply

Abbreviation: < =less than RL =reporting limit

 $\mu g/L = microgram per liter$

Page 34 of 38

26.UV Absorbers^

					Sample No.	R001
Parameter	Parameter	Test Method	Unit	RL	ZDHC Limit	Result
	Code					
2-(2H-benzotriazol-2-yl)-	36437-37-3	US EPA 8270, ISO	µg/L	100	100	< RL
4-(tert-butyl)-6-(sec-		22032, US EPA 527,				
butyl) phenol (UV-350)		US EPA 8321B				
2-(2H-benzotriazol-2-yl)-	25973-55-1	US EPA 8270, ISO	µg/L	100	100	< RL
4,6-ditertpentylphenol		22032, US EPA 527,				
(UV-328)		US EPA 8321B				
2-benzotriazol-2-yl-4,6-	3846-71-7	US EPA 8270, ISO	µg/L	100	100	< RL
di-tert-butylphenol (UV-		22032, US EPA 527,				
320)		US EPA 8321B				
2,4-Di-tert-butyl-6-(5-	3864-99-1	US EPA 8270, ISO	µg/L	100	100	< RL
chlorobenzotriazole-2-yl)		22032, US EPA 527,				
phenol (UV-327)		US EPA 8321B				
Conclusion		·				Comply

Abbreviation: < = less than

RL = reporting limit

 $\mu g/L = microgram per liter$

Page 35 of 38

27.Volatile Organic Compounds (VOC)^

					Sample No.	R001
Parameter	Parameter Code	Test Method	Unit	RL	ZDHC Limit	Result
Benzene	71-43-2	ISO 11423-1	µg/L	1	1	< RL
Xylene	1330-20-7	ISO 11423-1	µg/L	1	1	< RL
o-cresol	95-48-7	ISO 11423-1	µg/L	1	1	< RL
p-cresol	106-44-5	ISO 11423-1	µg/L	1	1	< RL
m-cresol	108-39-4	ISO 11423-1	µg/L	1	1	< RL
Toluene*	108-88-3	ISO 11423-1	µg/L	1	1	< RL
Conclusion						Comply

Abbreviation: < =less than RL =reporting limit µg/L = microgram per liter

Remark:

- * Sample and report only for mock leather
- ^ Indicates that the item is tested in TÜV Rheinland (Shanghai) Co., Ltd.

Page 36 of 38

Sampling Point Indication (Map)

Location GPS:Discharged Wastewater: 35.45, 118.36 Raw Wastewater: 35.45, 118.36 Sludge: 35.45, 118.36 Location GPS (N35°45′ E118°36′)

Page 37 of 38

Sampling Photo

Factory Gate

Factory Map

Other Factory Photo

Other Factory Photo

Discharged Wastewater

Discharged Wastewater

Page 38 of 38

Sampling Photo

Raw Wastewater

Raw Wastewater

Sludge

Sludge

- END -

🛕 TÜVRheinland® Precisely Right.

General Terms and Conditions of Business of TÜV Rheinland in Greater China

- Scope These General Terms and Conditions of Business of TUV Rhenland in Greater China ("CITCB") is made between the client and one or more member entities of TUV Rhenland in Greater China as applicable as the case may be ("TUV Rhenland"). The Greater China here of the theory of the theory of the theory of the client and the applicable laws who concludes the incorporated or unicorporated etity during contracts under the applicable laws who concludes the incorporated or unicorporated etity during contracts under the applicable laws who concludes the incorporated or unicorporated etity during contracts under the applicable laws. The blowing terms and conditions apply to agreed services including consultancy services, information, deleveries and similar services as well as an acting/services and other secondary Any standard terms and conditions of the client of any nature shall not apply and shall hereby be expressly excluded. No standard contractual terms and conditions of the client shall from part of the contract even if TUV Rheinland dee not explicitly deject to them. In the costed of an ongoing business relationsity with the direkt, this GTCB shall also apply to in the costed of the block terms. 1.1
- (i) (ii) 1.2
- 1.3
- 1.4

2 Quotations

3

Unless otherwise agreed, all quotations submitted by TÜV Rheinland can be changed by TÜV Rheinland without notice prior to its acceptance and confirmation by the other party. Coming into effect and duration of contracts

3.1

- Coming into effect and duration of contracts The contract stalls core is to effect to the agreed terms upon the quotation ister of TUV Rheinland or a separate contractual document being signed by both contracting parties, or upon the works without recently a quotation from TUV Rheinland (quotation, TUV Rheinland (quotation), TUV Rheinland (quotation, TUV Rheinland (quotation), TUV Rheinland (quotation
- 3.2 3.3

Scope of services

- Scope of services. The scope and type of the services to be provided by TOV Rhenkand shall be specified in the contractually agreed services scope of TOV Rhenkand by both parties. If no such separate service scope of TOV Rhenkand exists, then the written confirmation of order by TOV Rhenkand shall be decisive for the service to provided. Unless of thermise agreed, services beyond the scope of the standard services and the service decision of order by TOV Rhenkand shall be application of such are not one of the service decision of order by TOV Rhenkand shall be application of such are not one. In particular, or responsibility is assumed for the design, unless this applications not listed in the service decisions, as well as the intended use and application of such are not one. In particular, or responsibility is assumed for the design, unless this appendix services shall be performed in compliance with the regulations in force at the time the contract is sentened into. In determine, in its sole describe, the method on nature of the assessment unless otherwise agreed in writing or if mandatory provisions require a specific production by file workhy and working order of either teseid or examined parts more of the installations, and present megalations, nor of the systems on which the installation is abused. In application in accordance with regulators, nor of the systems on which the installation is abused in application in accordance with regulators, nor of the systems on which the installation is abused. In application in accordance with regulators, nor of the systems on which the installation is abused in application in accordance with regulators, nor of the used application in accordance with regulators, or of the timeliad visual systems of the installation is abused in a application in accordance with regulators, nor of the used application in accordance with regulators, or of the installation as abused in a advised application, and the systems on which the installation is abused in and as 41 42
- 4.3
- 4.4
- 4.5 4.6
- 47
- 48
- particular, TUV Rhenhand all assume no responsibility for the construction, selection of materials and assembly of mataliadons avanted, nor by there used an application accordance with responsible. The case of installation is avanted, nor by the provide by the contract. The case of installation is avanted by Rhenhand all and the Importants for the gap estimation of the second of the contract, with a with the inspection with the inspections are together and the contract with a without and the second of the contract with a within robot to the the inspections are together and the contract with a within robot to the the inspections are together and the contract with a within robot to the together and the contract with a within robot to the second of the appeal second the contract with a within robot to the contract with a within robot to the second of the appeal second. This shows applies if the contract with a within robot to the contract with a within robot together and the second of the appeal second. The shows applies if the contract with a within robot together and the second of the appeal second. The second of the contract with a within robot together and the second of the contract with a within the contract with a within a robot together and the direct second of the contract and the direct second of the contract and the direct second of the contract with a within the contract with a within the service of the contract with a within the service second of the contract with a within the service of the contract with a within the service second of the contract with a within the service second of the contract with a within the service second of the contract with a within the service of the contract with a within the service second of the contract with a within the service of the contract with a within the service of the contract within the service of the contract with a within the service
- 4.9

rmance periods/dates

- 5.1
- 52
- 5.3
- 5.4
- Performance period/diales The contractually agreed period/diales of performance are based on estimates of the work involved which are prepared in line with the data provided by the clerit. They shall only be binding if being confirmed as binding VD Rehealed an event diale that the source of the second second second second second second dialest the schematic data required documents to TUV Rehealed an event diaret has submitted at required documents to TUV Rehealed and the schematic data required and agreed period/diales of performance not caused by TUV Rehealed and the clerit has not Allided TUV Rehealed as the responsible for a delyin performance, in particular if the clerit has not Allided the service assigned in the contract. TUV Rehealed as the responsible for a delyin performance, in particular if the clerit has not Allided the service assigned in the contract. If the performance ATUV Reheritand is delayed us to underseeable period mixed in comessions to the duration of the hindrance pus any time period which may be required to resume performance. 5.5
- least to the duration of time miniaring participant and the performance performance. If the client is obliged to comply with legal, officially prescribed and/or by the accreditor prescribed deadlines, it is the client's responsibility to agree on performance dates with TUV Rheinland, which deadlines, it is the client's responsibility to agree on performance dates with TUV Rheinland, which are the transferred for the client's responsibility of the client's rescribed deadlines. TUV Rheinland 5.6 being in the net energies incident and the legal and/or officially prescribed deadlines. Turburk, where the her client to comply with the legal and/or officially prescribed deadlines. Turburk herinland umes no responsibility in this respect unless TUV Rheinland expressly agreed in writing clically stating that ensuring the deadlines is the contractual obligation of TUV Rheinland. enable the assumes r

The client's obligation to cooperate

- The client shall guarantee that all cooperation required on its part, its agents or third parties will be provided in good time and at no cost to TÜV Rheinland. 6.1
- 6.2
- provided in good time and at no cost to TUV Rheimand.
 the service shall be services shall be service shalll 6.3

Prices

- Prices If the scope of performance is not laid down in writing when the order is placed, involcing shall be based on costs actually incurred. If no price is agreed in writing, involcing shall be made in accordance with the price list of UTW Reinhand valid at the time of performance. Unless otherwise agreed, work shall be involced according to the progress of the work. If the execution of an order adverted over more than one month and the value of the contract or the agreed fixed price seceeds 2,2500.00 or equivalent value in local currency. TUV Rhenland may demine Jaynemis to account or in indiaments. 7.1
- 7.2 7.3

Payment terms 8

- 8.1 8.2
- Invoice amounts shall be due for payment within 50 days of the tracked date without deduction receipt of the mixed, no discounts and reclasses shall be granted. Invoices and client numbers. The payments shall be made to the bank account of TUV Pheniand as indicated on the invoice, stating mixeds and client numbers. The payment of the shall be made to be a shall be apprecised and the payment of the shall be payded and the payment of the shall be apprecised and the payment of the payded be apprecised and the shall be apprecised by a payded be payded by the TUV Pheniand is located. At the same time, TUV Pheniand reserves the right to be apprecised and the shall be apprecised by a payded be payded by the TUV Pheniand is located. At the same time, TUV Pheniand reserves the right to be apprecised by the total pheniand is located. At the same time, TUV Pheniand reserves the right to the same transmission of the payded by the total pheniand be payded by the total pheniand is located. At the same time, TUV Pheniand reserves the right to the pheniand is located. At the same time, TUV Pheniand reserves the pheniand by the total pheniand is located. At the same time, TUV Pheniand reserves the pheniand by the total pheniand is located. At the same time, TUV Pheniand Pheniand is pheniand. The pheniand is located at the same time, TUV Pheniand reserves the right to the pheniand is located. At the same time, TUV Pheniand Pheniand Pheniand Pheniand Pheniand is pheniand. Tuve Pheniand is located at the pheniand pheniand pheniand pheniand pheniand pheniand pheniand is located at the pheniand ph 8.3
- clai Shr 8.4
- damage The pro 8.5 13.1
- assets. Objections to the invoices of TÜV Rheinland shall be submitted in writing within two weeks of receipt of the invoice. TÜV Rheinland shall be entitled to demand appropriate advance payments. 86

This GTCB is only used for TÜV Rheinland Business Stream Products Version 5.0/February 2023

- 87
 - February 2023

- TÜV Rheinland shall be entitled to raise its fees at the beginning of a month if overheads and/or purchase costs have increased. In this case, TÜV Rheinland shall notify the direct in witting of the shall come into feet (period of notice) of charges in fees). If there is no fees remain under SNs contractual year, the client shall not have the right to ferminate the contract. If the rise in fees exceeds SNs per contractual year, the client shall not have the right to ferminate the contract. If the rise in fees exceeds SNs per contractual year, the client shall be entitied to terminate the contract. If the rise in fees exceeds SNs per contract lay the rise that is the shall be dismut to the contract. If the rise in fees external to include of changes in fees. If the contract is not set minimate to contract by the end of the period in noise of many since the rise of the encity of the noise period. 8.8
- Only legally established and undigued chains may be offer against claims by TÜV Rheinland. TÜV Rheinland shall have the right at all times to setoff any amount due or payable by the client, including but not limited to setoff against any fees paid by the client under any contracts, agreement and/or orders/quotations reached with TÜV Rheinland. 8.9 8.10
- Acceptance of work
- Any part of the work result ordered which is complete in itself may be presented by TÜV Rheinland for acceptance as an instalment. The client shall be obliged to accept inmediately. Instein the provide the state of the state 9.1
- 9.2
- 9.3
- 9.4 9.5
- The client is not entitled to make acceptance due to insignificant Dream a curruna: or y urv fill acceptance is excluded according to the nature of the work performance of TÜV Rheinland, the Countig the Follow-Audit stage, if the client was unable to make use of the time windows provided for within the scope of a certification procedure for auditing/set/mance by TÜV Rheinland and the complication of the scope of a certification procedure for auditing/set/mance by TÜV Rheinland and the complication is therefore to be whitehowing (e.g. performance of surveillance auditing) of if the client as compensation for expenses. The client reserves the right proves that the TUV Rheinland has incurred no damage whatsoever or only a considerably lower damage than the above lung sum. Insofars as the client has undertakein in the contract to acceptives. TUV Rheinland has the provide the service is not called within one year after the orthe tab scene placed. The client reserves the right to prove that the TUV Rheinland has also 9.6

Confidentiality

10.1

10.2

10.3

- a) b)
- c)
- 10.4
- 10.5 a)
- b) c) 16.4 10.6
- <text><text><text><text><text><text><text><text><text><text> documentation purposes required by laws, regulations and the requirements of working procedures of TUP Rheinland. From the start of the contract and for a period of three years after termination or expiry of the contract, the receiving party shall maintain strict secrecy of all confidential information and shall not disclose this information to any thrit parties or use if for itself.

Copyrights and rights of use, publications

- TÜV Rheinland shall retain all exclusive copyrights in the reports, expert reports/opinions, test reports/results, results, calculations, presentations etc. prepared by TÜV Rheinland, unless otherwise agreed by the parties in a separate agreement. As the owner of the copyrights, TÜV Rheinland is fire to grant others the right to use the work results for individual or all types of use 11.1 11.2
- 11.3
- 11.4 11.5
- Childrette digitale di yi the parter in a separate appresent. A construction of the co 18.1 18.2

12. Liability of TÜV Rheinland 12.1

11.6

11.7

12.2

12.3

12.4

12.5

- Liability of TÜV Rheinland Irrespective of the legal basis to the fullest extent permitted by applicable law, in the event of an basis of constrained beginners of the TUV Basis of TUV Reparator for all damages, bases are shall be limited to: (i) in the case of a contract twin and the permitted basis, a maximum of the entrie contract, (ii) in the case of a contract twin and the permitted basis, a maximum of the entries contract, (iii) in the case of a contract twin and the permitted basis, a maximum of the entries contract, contract supersay change on a time and material basis, a maximum of that provides for the possibility of patient entries the twent of the the entries outcast, the basis and accumulate liability calculated according to the transport provides for the individual order under which the damages or losses have occurred. Natwithstanding the above, in the event that the basis and accumulate liability calculated according to the transport provides for the transport Repaired that be only intered to and shall not exceed the said 2.5 Million Euro or equivalent contract in cold and category to damages for a person's density, physical largor, or lenses. In cases involving a lundamental breach of contract, TUV Rheinland will be liable even there more regignese is involving a lundamental breach of contract, TUV Rheinland will be liable even there more regignese is involving a lundamental breach of contract, TUV Rheinland will be liable even there more regignese is involving a lundamental breach of contract, the breach of the tractical contraction consequently for senselite damages, increase any of the circumstances described in and according to the standard that breach is contract at the time of the type of the sense of the provide the said 2.5 Million the the and contraction contraction and that the total the track of the person is contraction and the contract and the said to the said to the track of the contraction and the contrest of the said the track of the person the the said the th

- breach (reasonably foreseeable damage), uries any of the circumsures because at a sum-22 applies. The second seco
- Unless otherwise contractually agreed in writing, TÜV Rheinland shall only be liable under the contract to the clent. The Imitation periods for claims for damages shall be based on statutory provisions. None of the provisions of this article 12 changes the burden of proof to the disadvantage of the clert. 12.6 12.7

13. Export control

When passing on the services provided by TÜV Rheinland or parts thereof to third parties in Greater China or other regions, the client must comply with the respectively applicable regulations of national and international export control law.

The performance of a contract with the client is subject to the proviso that there are no obstacles to performance due to national or international foreign trade legislations or embargos and/or sanctions. In the event of a violation, TÜV Rheinland shall be entitled to terminate the contract with immediate effect and the client shall compensate for the bases incured thereof by TÜV Rheinland.

Data protection notice

14

15.

15.1

15.2

15.3

15.4

15.5

16

16.1

16.3

17. 17.1.

17.2

17.3.

18.3.

19

19.1

19.2

a)

b)

c)

19.4

Data protection notice: The clear understands and agrees that TVV Rheiniand processes personal data (including but not supplied the clear bits the purpose of Additing this contract. The clear confirms that it has observed the prior consent of the data subject, which entitles TVV Rheiniand to access, use, or process the personal data that the clear collected or processes by head and unselfierd to TVV use and process the data in accordance with her relevant legal basis. If any personal data that he clear disclosed or transferred to any thing youry or any oversease by head and use that is to be disclosed or transferred to any thing youry or any oversease by head and table that is the personal data was collected, the clear data occurs that has collaried the prior consent of the personal data subject, the clear data occurs and the scalar data occurs and the compliance with the privacy and personal data as early releaded uses and regulations in China and the local country. TVV Rheiniand will take measures to avoid any keakage, abuse, mainplation, ongoin as a corresponding reason of data insuffer data abusches may exercise the blocking register, right of information, right of occurs data protection subjects may exercise the blocking register right of findmails with the completent data protection subjects may exercise the blocking topolescing, please rule to the respective data protection information. You can contact the Group blocking data subjects. TVV Rheiniand AG, cli oGroup Data Protection Officer, Am Grauen Steel, 51100 Cologne, Germany.

Retention of test material and documentation

- Retention of test material and documentation The last samples avointist by the certent to TUV Pheniand for testing will be scrapped following testing or will be returned to the client at the client's expense. The only exceptions are test samples, which are placed in storage on the basis of statutory regulations or of another agreement with the client. The statut samples of the samples are stored at the premises of TUV Pheniand. The cost of placing clients sample for storage with be discussed to the client to be placed in storage at their premises, the reference samples or documentations must be made available to TUV Pheniand of making available the reference amples and/or documentations, many lability claims for material and pecunity dynamic results (To Monitoria) and a storage for them is though forward by the client's against TUV Reteniand shall be violate. Client's adjust the reference amples and the status storage to refer the status storage to making certifications or status and the status storage to reference and the client's premises and Client's against TUV Reteniand shall be violate. Client's adjust the status and the status storage to reference and the client's premises and control of the handow and displace of the test samples for storage on the client's premises and the distorations or warehouses of TUV Rheniand only in case of gross negligence.

Termination of the contract

- 16.2
- Certaination of the contract of the CRCS, TUV Rheinland and the cleant are stilled to terminate the forthard in the interface of a devices combination of the remaining strengtheness of the contract hiddwidely and independently of the contraction of the remaining strengtheness of the contract hiddwidely and independently of the contraction of the remaining strengtheness of the contract hiddwidely and independently of the contraction of the remaining strengtheness of the contract hiddwidely and independently of the contraction of the remaining strengtheness of a suspension of the acceleration or conflict strengtheness of the contract hiddwidely and independently of the contraction of the leant to terminate the strengtheness of the contract. The strengtheness of the contract hiddwidely into the termination date of the contract. The strengtheness of the contract hiddwidely into the termination date of the contract. The strengtheness of the contract hiddwidely into the termination of the strengtheness of the contract hiddwidely into the termination date of the contract hiddwidely into the termination of the strengtheness of the strengtheness of the contract hiddwidely into the termination of the strengtheness of the strengtheness

We have been a contracted to be accessed and the contract in the contrel integret in the contract in the contract in the co

Hardship The Parties are bound to perform their contractual duties even if events have rendered performance more onerous than could reasonably have been anticipated at the time of the conclusion of the

more encrusa than could reasonably have been anticipated at the time of the conclusion of the Nobehthatanding paragraph of this Clause, where a Party proves that: (a) the continued performance of its contractual dates has become excessively onerous due to an evert beyond in seasonable contractual which it could not executely have been expected to be an evert beyond in assonable contractual which is could not executely have been expected to be an evert beyond and not executed on the invocation of the Clause, to regoting the event contractual terms which reasonably allow to overcome the consequences of the event. Contractual terms which reasonable mice approach the paragraph. The Party howing this Clause is entitled to terminable the contract, but cannot request adaptation by the judge or arbitrator without the agreement of the Party.

Partial invalidity, written form, place of jurisdiction and dispute resolution All amendments and supplements must be in writing in order to be effective. This also apples to amendments and supplements must be invalidity in order to be the structure of the provision in the gard and even of the provision and the structure of the provision in the gard and commercial terms provision that consists to the context of the invalid provision in tegal and commercial terms of the structure of the provision and the structure of the

If TUP Revinted in question is legally registered and existing in Hong Kong, the contra and the learns and continon shall be governed by the laws of hereby agine that the contra and these lems and continon shall be governed by the laws of hereby agine that the contra and these lems and continons shall be governed by the laws of hereby agine that the contra and these lems and continons shall be governed by the laws of hereby agine that the contract and these lems and continons shall be governed by the laws of hong Kong. The contract and these lems and continons on the execution thereof hall be settled finding through negotiations.
Unless otherwise slipidated in the contract and these lems and conditions or the execution thereof hall be settled finding through negotiations.
Unless otherwise slipidated in the contract, and here here how normal to the satism of the figure of the the dispote of the beautitud.
In the case of TUV Rhenitiand in question being legally registered and existing in The Pace/se Regulate of China, to China intermedicate Bootsmine and Tup Restinger and Pace and Resting in Tubers, to a submitted.
The attraction shall take place in Reside. Sharinghi, Sharuthen or Chinagrig as appropriately choice by the claiming being Registered and existing in Tubers, to a chartarian shall take place or Register and existing in Tubers, to a chartarian that lake place in Registered and existing in Tubers, to a chartarian shall take place in Registered and existing in Tubers, to a chartarian that lake place in Registered and existing in Tubers, to a chartarian shall be here and the solution of the chartarian shall take place or Registered and existing in Tubers, to a chartarian shall take place or Registered and existing in Tubers, the chartarian shall take place or Registered and existing in Tubers, the deviation of the relevant application frages and the solution and the solution in tubers and the solution in tubers and the solution in tubers and tubers and tubers and tubers and t

Partial invalidity, written form, place of jurisdiction and dispute resolutio